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MEMBERSHIP-SET PARAMETER ESTIMATION VIA
OPTIMAL BOUNDING ELLIPSOIDS*

Abstract

"In the last few years, there seems to have been a resurgence of interest in the
membership-set-theoretic approach to parameter estimation. This report concentrates on
the optimal bounding ellipsoid (OBE) approach to membership-set parameter estimation.
with emphasis being placed on the performance of one particulor OBE algorithm in non-
ideal conditions. It is first shown that OBE algorithms offer distinct advantages over
commonly used recursive parameter estimation algorithms like the recursive least-squares
" (RLS) algorithm in some real-life environments. Then the extension of a particular OBE
algorithm to the problem of parameter estimation with unobservable but bounded inputs
(ARMA parameter estimation) is discussed in some detail. The problem is important
because, in many signal processing applications, the inputs to the system under
consideration are unknown. Analysis of the extended algorithm shows that under some
conditions, the extended algorithm yields 100% confidence intervais for the putameters at
every sampling instant. This feature does not appear to be present in any other existing
ARMA parameter estimation algorithms. Furthermore, the transient performance of this
algorithm is observed to be superior to that of the extended least-squares algorithm. Finite
precision effects of one of the OBE algorithms are also studied via analysis of error
propagation in the algorithm and through simulations™ The analysis shows that the
algorithm is stable with respect to errors due to finite word-length computation and
storage. Simulation results demonstrate the superiority of the algorithm to the
conventional recursive least-squares algorithm for small word-lengths. Finally, analysis
of the tracking characteristics of one of the OBE algorithms is performed. It is shown that
the algorithm is capable of tracking small time variations in the parameters. Since large
variations may cause the algorithm to fail, a rescue procedure is proposed which can
enable the algorithm to also track large time variations. Simulation results demonstrate
that the tracking capability of the algorithm is comparable to that of existing adaptive

filtering algorithms.

*This report is a reproduction of Ph.D. dissertation ot Ashok K. Rao, Department ot
Electrical and Computer Engineering, University of Notre Dame, Notre Dame, Indiana,
August, 1989. This work has been supported, in part, by the National Science
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CHAPTER 1

MEMBERSHIP-SET PARAMETER ESTIMATION

1.1 Iatroduction

System identification deals with the formulation of mathematical models of dynamical
systems based on input and output data records. The tormulation of a model is usually
done in two stages [Ljung, 1987]. In the first stage, if the dynamics ot the unknown
system are known, then a set of candidate models (the model set) can be specified. In
other cases, standard model sets (black box models) can be used without reference to the
actual system dynamics. The model set itself, is just a mathematical relationship between
the system variables. It could be in continuous time or discrete time. It could also be
characterized as being linear or nonlinear, deterministic or stochastic. The model set
usually contains unknown quantities, which are termed the unknown parameters of the
model. The next stage of system identification uses the input-output record and other
information to obtain the 'best' model from the model set by choosing the unknown
parameters appropriately. This stage of identification has been termed parameter
estimation in the literature. In the classical approach, once the system model (with an
unknown parameter vector 0*) has been formulated, then a predictor model (with an
adjustable parameter vector 0) is formed, which, yields at every instant of time, a
prediction of the system output, based on past information. The predicted output is a
function of the parameter vector 8.Then, a criterion of fit is chosen. Perhaps the most

widely used criterion is the mean squared prediction error criterion, where the prediction
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error is the error between the system output and the predictor model output. Once a
criterion of fit is chosen, the parameter estimate is chosen to be that value of 8 which best
fits the criterion. Thus least-squares parameter estimates minimize the mean or average

squared prediction error.

System identification forms the core of most adaptive signal processing and adaptive
control techniques. In telephony, for example, echo cancellation is required for long
distance speech communication [Messerschmitt, 1984]. In the transmission of speech,
echos arise primarily due to leakage through the far end hybrid. Speech echo cancellers
usually model the hybrid as a FIR filter and adjust the parameters of the predictor tilter
(also a FIR filter) to minimize the mean-squared error between the echo and the predictor
filter output. In high resolution spectral estimation, the signal of interest is usually
assumed to be a sum of sinusoids in noise. This signal is often modeled as the output of
an IR filter driven by white noise. The parameters of the filter are then estimated and
used to construct an estimate of the spectrum. In adaptive control, a model of the
unknown plant is first formed. A common model used is the ARX model described in the
next section. The estimated model parameters are then used by the controller to generate

the control signal.

Most system model sets incorporate a disturbance term which can represent
observation noise or modeling uncertainty. This noise term is usually assumed to be a
stochastic process. Some statistical estimation schemes such as maximum likelihood
estimation require precise knowledge of the probability density function of the noise. The
simpler least-squares schemes require the noise to be white in order to obtain unbiased
parameter estimates. If the noise is not white, then unbiased estimates can be obtained by
modeling the noise term as a linear regression process. This approach is used in

extended least-squares(ELS), generalized least-squares (GLS), recursive maximum




likelihood (RML) [Ljung, 1983], output error mewods [Goodwin, 1984]. The
convergence analysis of all these methods, however, does require that the noise be a

stationary stochastic process.

As opposed to classical approaches to parameter estimation which vield point
estimates of parameters by optimizing some criterion of {it, membership-set parameter
estimation (MSPE) algorithms yield a set of parameter vectors which 1s compatible with
the model structure, observation record and noise constraints. In general, nc knowledge
of the statistics of the noise process is assumed. However, the noise is assumed to be
constrained in some other way, e.g., with bounded energy [Fogel, 1979] or bounded
magnitude [Fogel, 1982]. Membership-set algorithms are thus preferable when the noise
is too structured as in the case of error occurring when a large order system is modeled
by a lower order model. MSPE algorithms yield 100% confidence intervals for the
parameter estimates at every time instant. In contrast, confidence intervals for least-
squares parameter estimates can be obtained only asymptotically in most cases. Another
important feature of recursive MSPE algorithms is a discerning update strategy whereby
only a fraction of the incoming data points need be used to construct the membership
sets. This not only reduces the total processing time but also enhances the potential for
using these algorithms in multi-channel environments. For every observation which is
processed, recursive MSPE algorithms can also indicate if the observation is consistent
with the model and noise bounds. Thus, the presence of outliers or large modeling

inaccuracy can be detected quite easily, in contrast to other parameter estimation schemes.

In this report, attention will be focussed on the estimation of membership sets of
parameters of linear discrzte time difference equation models. In the remainder of this
chapter, an overview of some membership-set algorithms will be provided. In Chapter 7,
a particular class of membership-set algorithms called optimal bounding ellipsoidal (OBE)

estimation algorithms is studied at some length. The algorithms in this class obtain,




recursively, ellipsoidal outer bounds of the membership sets ot parameters. Though the
membership-sets obtained are often larger than those obtained by using other algorithms,
the bounding eilipsoid algorithms have the advantages of low computational complexity,
analytical tractability, and robustness to parameter variations and finite precision etfects.
In Chapter I1I, a particular bounding ellipsoid algorithm, i.c.. the DHOBE algorithm of
Dasgupta and Huang [Dasgupta, 1987], is used for the estimation of parameters of
systems with unobservable inputs. The performance of the algorithm is analyzed and
sufficient conditions for satisfactory behavior are derived. In Chapter IV, finite precision
effects in the DHOBE algorithm are studied. It is shown that the algorithm remains stable
(algorithmic variables remain bounded) in finite word-length environments. Simulation
results show that the performance of the algorithm is superior to the recursive least-
squares aigorithm when the word-length is small. The tracking property of the DHOBE
algorithm is studied in Chapter V. Conditions under which the algorithms can track
variations in parameters are derived. Modifications to the algorithm are suggested which
improve the tracking at the expense of increasing the size of the outer bounding

ellipsoidal approximation to the membership set.

The overview of membership-set parameter estimation algorithms commences with an
enumeration of the different model structures which are commonly employed in

parameter estimation.

1.2 Model Structures
The various types of model structures which are considered in this report are defined
below.
MA model: A moving average model is defined by
y(t) = bgu(t) + byu(t-1) +...+ b u(t-n) + v(t) (1.2.1)




where v(t) and u(t) denote the system output and input at time instant t, respectively. and

v(t) denotes the disturbance at time t.

AR model: An autoregressive model is defined by the following difference equation
V(D) = ay(t-D) + a2 y(t-2) +...+ a, y(t-n) + v(1) (1.2.2)

where v(t) and v(1) are os detfined above.

ARX model:  An autoregressive with exogenous input model is defined by
V(D) = a)v(t-D+ @ v(t-2)+.+ a, y(t-n) + bou(t)+ byu(t-D+..+by, utt-m) + vit) (1.2.3)

where v(t), u(t) and v(1) are detined above.

ARMA model An autoregressive moving average model is detfined by
v(t) = a1y (t- D+ @ y(t-2)+..+ a, y(t-n) + w(t)+ cyw(t-1)+..+c; w(t-r) (1.2.4)

where w(t) is a unobservable input or noise sequence and y(t) 1s the system output.

In the statistical literature, v(t) and w(t) are assumed to be zero mean, white stochastic
processes. However, since the approach used in this report 1s deterministic. these
restrictions wiil not be imposed. It will be assumed, instead. that vtt) and w(t) are
bounded in magnitude. This assumption is quite realistic in practice. For example,
observation roise which arises due to quantization or round-oft error is bounded. as 1s
the error in measurements due to climatic effects. Stmilarly. the error due to model

mismatch is often bounded.
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1.3 Membership Sets

Definition: (Membershin set)
Membership set: A membership set is a region in the parameter space which contains all
the parameter vectors consistent with the model structure, observation record ana noise

bounds.

Thke ARX model which was defined in the last section is @ commonly used model
structure, since it can model linear time-invariant systens which have poles and zeros.

The ARX system model can be expicssed as

y(1) = 8¥Td(t) + v(1) (1.3.1)

with
0* = [ay, ay...., 4, by, by, - by 1T (1.2.2)

and
D(1) = [y(t-1), y(t-2), .., y(t-n), u(t), u(t-1), .,u(t-m)]T (1.3.3)

[t 15 assumed that the noise {v(t)} is constrained in some way. For simplicity, it is

assumed that {v(t)} is bounded in magnitude. Hence there exists a known positive v,

such that

lv(ty! < v (1.3.4)

Given {y(t), u(t), t = 1, 2, .., T), the goal of membership-set parameter estimation 1s
to find the smallest set of parameter vectors W(T) in euclidean space RN, where N =
n+m+1, which is consistent with all the above equations (1.3.1) to (1.3.4).

From (1.3.1) and (1.3.4), it follows that

Ly(t) - ¥Td(M) 1 < (1.3.5)




So the set S, enclosed by the hyperplanes

Hiw={0e RN v)-0Td@)=+y }and Ho) = {6 e RN:v(1) - 0Td(1) = -y }
contains the true parameter. The S, can be described as the intersection of two halt
spaces. Given the observation record up to time instant T. the smallest possible
membership set will be

W) =A S
i=1

Finding a description ot the exact membership set is an arduous task. since it may have
thousands of vertices for even small values of the order N and data record size T. For
example, when N=3, the number of vertices could be as large as T(T-1)+2 [Coxeter.
1973]. Thus tor T=100, the membership set could have almost 10.000 vertices.
Consequently most MSPE algorithms attempt to obtain a region ot simpler shape like an
ellipsoid or a box which contains the true membership set w(T). Recently, however, two
exact polytope bounding algorithms have been proposed [Walter, 1987: Mo, 1988],
which recursively yield an exact description of the true membership set. The next section
discusses the exact polytope updating algorithm of Mo and Norton and the exact cone

updating algorithm of Walter and Lahanier.

1.4 Exact Polytope Bounding

Even though th-oreti. ully, the true membership set may have thousands of vertices
as the numbe .- " ira points processed increases, in practice, once the intersection of the
first few halt spo- < formed, the membership set becomes quite small and so only a
small fractior. of the incoming half spaces affect the membership set. Hence the number
of vertices of the membership set increases quite slowly as the number of data points
increases. This provides the motivation for developing algorithms which identify the

precise shape of the membership set.




For the membership set at any instant t, the exact polytope updating algorithm (e.p.u.
algorithm) of [Mo, 1988], stores a list of all the vertices in terms of their components.
For each vertex, a list of all adjacent vertices (the vertex-vertex list), and the hyperplanes
which intersect and form the vertex (the vertex-plane list) are also stored. When a new set
of parameter bounds (the set S;) arrives, a test is made to see how S; intersects the
existing membership set y(t-1). If the intersection is void, this indicates that either the
model structure or noise bound is incorrect. If S; contains w(t-1), then y(t) = y(t-1), and
the parameter bounds provided by S are redundant. If the intersection is not void and if
St does not contain W(t-1), then y(t-1) has 1o be updated. This involves (i) calculating the
new vertices formed when Hi(t) und/or Ha(t) cut w(t-1), and creating vertex-vertex and
vertex-plane adjacency lists for the newly formed vertices: (ii) updating the vertex-vertex
and vertex-plane lists of the old vertices which belong to y(t-1) ™ S, and (iii) removing

the vertices made redundant by S; .

The exact cone updating (e.c.u.) algorithm of Walter and Lahanier is similar in many
ways to the e.p.u. algorithm. It transforms the membership set, which is a convex
polyhedron in RN, into a polyhedral cone in RN+1. Thus the membership set at time t-1
is represented by a cone Cy.1. The extreme rays of C,.; are stored as columns of a matrix
M. When the parameter bounds due to the t'th observation are applied, then as before,
three situations can arise. Either C..; n S¢ = ¢, or §; © C,;, or one of the hyperplanes
Hi(t) or Ha(t) cut C.;. In the latter case, the extreme rays of C, will be those of C,
lying in the set Sy, and new rays belonging to Sy M C..;. Each of these new rays 1s
obtained as a linear combination of two adjacent extreme rays of Cy.; lying on either side
of the cutting hyperplane. Finally, constraints that become redundant at this stage are

eliminated.

The computational complexity of both these methods is quite large, even for small

order models. The order of complexity at each iteration also grows slowly as new data
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points are processed, since the number of vertices can increase with every new sample.
For these reasons, they are probably not suitable for real time processing applications. It
is claimed in [ Mo, 1988], that the e.p.u algorithm is superior to the e.c.u. algorithm in
terms of numerical robustness. Numerical results have only been reported for the e.p.u
algorithm, applied to one ARX parameter estimation problem. and it remains to be seen,

how well the algorithms perform in practice.

1.5 Orthotope Bounding

A popular approach in membership-set parameter estimation is to approximate the
membership set by an orthotope (a rectangular box) which contains the membership set.
This has the added advantage of giving accurate uncertainty intervals for each of the
unknown parameters. A membership-set description in terms of parametric uncertainty
intervals (PUT's) on the individual parameters, is often preferable to a description of an
extremely complicated N-dimensional region. This is particularly true when the
parameters have a direct physical interpretation. It has been shown, [Milanese, 1982],
that the nghicst possible PUT's can be obtained by linear programming. Specifically,
Milanese and Belforte showed that the problem can be reduced to solving 2N linear
programming problems in N variables with 2T constraints, where N is the order of the
model and T is the number of data points. Their algorithm, which is termed the minimum
uncertainty interval correct estimator (MUICE), is not recursive and computationally
intensive. Consequently, it is not suited for real time applications or to the analysis of
non-stationary data. A simple recursive algorithm which constructs outer bounding
orthotopes has been proposed [Huang, 1980]. However this algorithm does not yield
small enough orthotopes for large order systems. Another recursive algorithm which

constructs outer bounding orthotopes has been proposed recently [Pearson, 1986]. The
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PUTI's obtained by using the algorithm are not as tight as the PUI's of the MUICE,

although, they are much easier to evaluate.

It is clear from the discussion above, that both the exact polytope bounding and the
orthotope bounding algorithms involve considerable amounts of computation. In fact, the
compuiational complexity of the exact polytope bounding algorithms depends heavily on
the characteristics of the data. Thus these algorithms are not suited for real time
applications. In the next chapter, several ellipsoidal bounding algorithms will be
discussed, all of which have the advantageous features of low computational complexity
and analytical tractability. The latter tfeature has simplified the application of the
algorithms to different cases such as ARMA parameter estimation and output error
parameter estimation, and, has enabled its implementation via lattice filters and systolic

arrays. All this and much more coming up, so don't go away!




CHAPTER 11

BOUNDING ELLIPSOIDAL PARAMETER ESTIMATION

2.1 Introduction

The optimal bounding ellipsoid algorithms outer bound the membership set of
parameters by ellipsoids in the parameter space. The idea of using ellipsoids to bound
sets was originally proposed by Schweppe [Schweppe, 1967], in the context of state
estimation. He formulated a recursive algorithm for completely specified dvnamic
systeins. with unknown but bounded inputs and bounded observation errors. At every
instant. the algorithm yields ellipsoidal sets, which contain the true time varying system
state. The state estimate can be taken to be the center of the ellipsoid. The algorithm
differs tfrom the Kalman filter, developed for linear dynamical systems with gaussian
inputs and noise, only in the gain sequence. Following Schweppe, Fogel proposed a
recursive algorithm for caiculating ellipsoidal outer bounds of the membership sets of
parameters. assuming energy constraints on the noise {Fogel, 1979]. By imposing
instantaneous bounds on the noise, Fogel and Huang {Fogel, 1982] came up with
membership-set algorithms, wherein, the size of the bounding ellipsoids is optimized
according to different criteria. A by-product of the optimization procedure is a discerning
update strategy which makes efficient use of data (Fogel, 1982]. Based on their work,
different bounding ellipsoidal algorithms have been proposed in the past few years. In
this chapter, the optimal bounding ellipsoid (OBE) algorithms of [Fogel, 1982] are
presented first. Then in Section 2.3, a more recent OBE algorithm, the DHOBE algorithm
(Dasgupta, 1987], which uses a slightly different ellipsoidal formulation and optimization

criterion, 1s discussed at some length. An analogy between weighted least-squares and

11




the OBE algorithms is drawn in Section 2.4. Some simulated situations in which the
pertormance of the OBE algorithms is seen to be markedly superior to the recursive least-
squares algorithm are presented in Section 2.5. Finally, in Section 2.6, an improvement
to the OBE algorithms ot Fogel and Huang [Belforte. 1985] is discussed and the

improved algorithm is compared with the other OBE algorithms via simulations.
2.2 The OBE Algorithms

As mentioned earlier, the OBE algorithms of Fogel and Huang [Fogel, 1982],
recursively obtain ellipsoidal outer bounds to the membership set. The model structure

considered is the ARX model of (1.3.1)
y(t) = 0% Td(t) + v(t) (2.2.1)

where 6* | the true parameter vector, and, ®(t), the regressor vector, are N dimensional
vectors given by (1.3.2) and (1.3.3) respectively. The noise v(t) is assumed to be

uniformly bounded in magnitude
Lv(t) <y (2.2.2)

In order to develop a recursive tormulation for the bounding ellipsoids, it is assumed that
at time instant t-1, the true membership set is outer bounded by the ellipsoid E;.;

described by
Ei1 = (6 RN:[6-6(t-1) ]TP-1(t-1) [6-8(t-1)] < 1 } (2.2.3)

where P-1(t-1) is a positive definite matrix, and 6(t-1) is the center of the ellipsoid. At
time instant t, observation y(t), defines a set Sy , which is a degenerate ellipsoid in the

parameter space

St=(0e RN: [y(t) -0TdM)}2 <v2 ) (2.2.4)
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E( which conrtains the intersection of E.; and S is then given by

Ei=i0e RN:[(8-6(t-1) [T P-1(t-1) [B - 8(t-1)] + A, [y(t) — 8TD(1)]2

where A is a positive time varying updating gain which is chosen to minimize the size of
the ellipsoid E;. By performing some tedious, but straightforward algebraic manipulation.

it can be shown that E; can be expressed in the form

E;={0e RN:(8-0(1) TP () [6-6(1)] <1} (2.2.6)
where

Q1) =P-1(t-1) + A, P(YDT(1) (2.2.7)

P-l1(t) =5 2(t) Q-1(1) (2.2.8)

M [y(D-PT(1)8(t-1)] 2

(2.2.9)
1+ A OT(HP(t- YD T(t)

ot =1+hy2-

B(1) = 0(t-1) + A QDM [y()-DT(1)O(t-1)] (2.2.10)

The matrix inversion required in (2.2.10) can be circumvented by using the matrix
inversion lemma in (2.2.7), which yields

P(t-1)D()DPT(1)P(t-1)

(2.2.11)
14+ A ®T(1)P(t-1)DT(1)

Q) =P(t-1) ~ A

In order to ensure that the initial ellipsoid Eq contains 6%, Ey is taken to be a large ball

centered around zero, i.e. P(0) = M.I, where M is a large number and I is the N by N

identity matrix, and 6(0) = 0. If an initial estimate of 8*is available, then 6(0) could be

set to that value.
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In the minimal volume sequential (MVS) algorithm. at every time instant t, the

determinant of P(t), which is proportional to the volume of the enclosing ellipsoid E, , is

minimized with respect to A;. This yields the following formula for the gain factor
If 2N{y2-82() ] -G(t) 20, then A, =0 (2.2.12a)

with 8(t) = v()-DT(t)8(t-1)

otherwise
b= —2 T Vo — a0 (2.2.12b)
201

where
a; = (2N -1) Y2 G2(1) (2.2.12¢)
a2 = G(t) [(4N-1)y2 - G(t) + 82(1)] (2.2.12d)
a3 = 2N[y 2 - 82(t)] - G(1) (2.2.12¢)

and G(1) = dT()P(t- )P T (1)) (2.2.126)

Note that when A, =0, E; = E.1, i.e. 6(t) = 8(t-1) and P(t) = P(t-1). The evaluation of
Ay 1s thus the basis of a discerning update strategy, whereby, the " innovativeness " of the
observation pair {y(t), ®(t)} is checked in (2.2.12a). An update ( A, # 0) occurs only if it
is possible to construct an ellipsoid E;, which bounds the intersection of E;. and S, , and

whose volume is less than E_j .

The computational compiexity of the ellipsoid updating formula (2.2.8)-(2.2.11) is
O(N2), which is same order of computational complexity as that of the RLS algorithm.
For the discerning update strategy , the major contributor to the computational cost is the
computation of G(t) = ®T(t)P(t-1)dT(1), which takes (N2 + N) multiplications and

(N+1)(N-1) additions.
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Instead of choosing A, to minimize the volume. it can be chosen to minimize the sum
of the semi-axes of the bounding ellipsoid E;. This is achieved by minimizing the trace of
the matrix P(t). The resulting minimum trace sequential (MTS) algorithm has a different
update strategy . In case of an update. in order to find the optumum updating gain factor,
the positive root of a certain third order polynomial has to be tound [Fogel, 1982]. The

MTS algorithm, therefore, has a higher computational cost than the MVS algorithm.

2.3 The DHOBE Algorithm

The updating gain factors of the MVS and MTS algorithms ot the above sccetion are
chosen to minimize the size of the bounding ellipsoid. This is no doubt desirable. when
the parameters of the unknown system are fixed. However, if in case, the true parameter
changes after the the ellipsoid has shrunk, it is possible that the resulting bounding
ellipsoid. if it exists, will no longer contain the true parameter and hence it will not be
possible to track the true parameter. Thus from the point of view of tracking time varying
parameters, it may not always be advantageous to minimize the size ot the bounding

ellipsoids.

The motivation for the development of the DHOBE algorithm, stems more from the
point of view of adaptive filtering and prediction error minimization, rather than from
membership-set parameter estimation. This accounts for the similarity between the
DHOBE algorithm and some bounded error algorithms proposed in the adaptive control
literature [Fortescue, 1981; Ortega, 1987]. The quantity which is minimized in the
DHOBE algorithm is a certain upper bound on the normalized parameter estimation error.
This yields an updating rule which has a computational complexity of only (N+1)
multiplies. Furthermore, minimizing with the above criterion greatly enhances the

analytical tractability of the algorithm. Analysis shows that the a priori prediction error is
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asymptotically bounded by the bound on the noise. Additionally, a degree of
uncorrelatedness between the inputs and the noise is sutficient tor asymptotic cessation of
updates in the tixed parameter case. The updating gain factor in the algorithm also plays
the dual role of a forgetting factor. This improves the tracking capability ot the algorithm
vis a vis any of the MSPE algorithms. On the flip side. since the size of the bounding
ellipsoids 1s no longer the criterion for optimization, the DHOBE algorithm. in general.
yields bounding ellipsoids which are larger than those yielded by other OBE algorithms.

The above remarks will become clearer after the following discussion.

The sequence of optimal bounding ellipsoids in the DHOBE algorithm is developed

as follows. Let the bounding ellipsoid at time instant t-1 be
Ei1 = {0 RN:[6-06(t-1) |TP-1(t-1) [6 - 8(t-1)] < 2(t-1) } (2.3.1)

where. us in the previous section, P-1(t-1) is a positive definite matrix, and 6(t-1) is the
center of the ellipsoid. The factor 62(t-1) is a positive time varying scalar, which along
with P-1(t-1) determines the size of E,.;. Since the true parameter 6* € Ej, o2(t-1) can

also be thought of as being an upper bound on the normalized parameter estimation error
V(t-1) = {8*% - 8(t-1) ]T P-1(t-1) [6% — 6(t-1)]

An ellipsoid E; which bounds the intersection of E,.; and the set S; , where §; is

described by (2.2.4), is then given by

Ei=(0e RN: (1-1)[0 - 0(1-1) ]T P-1(1-1) [6 — 6(1-1)] +A [v(t) — 8TdD(1)}2
< (1-Ap) 02(t-1) + A Y2 ) (2.3.2)

Comparing (2.2.5) and (2.3.2), it can be seen that in (2.3.2), A is an updating gain
factor and (1- A, ) is a forgetting factor. By performing some algebraic manipulations, an

expression for E; can be obtained as
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Ei={0e RN:[6-06(t) ]TP-I(t) [6-86(1)] < c2(t) } (2.3.3)
where
P-1(t) = (1- A)P-1(t-1) + A D(HDT(1) (2.3.4)

A (1= [y(D)-DT(1)8(t-1)] 2

o2(t) = (1-A) o2(t-1)+ A Y2 - ohr e OTOPCE DT (2.3.5)
B(t) = 6(t-1) + A POYDO[y(t)-DT(t)8(t-1)] (2.3.6)

Using the matrix inversion lemma in (2.3.4) vields
P(t) = I_LM{P(H)— AMP(t- DD T(HP(t-1) 2.3.7)

1Ay + M@ T(HP(t-1)DT(1)
The 1nitial conditions are chosen to ensure that 6* € Eq. A possible choice is
P(0) =1, and 6%(0) = 1/e2 where € << 1.

The updating gain X, is chosen to minimize G2(t) at every instant t. The minimization

procedure vields the following updating criterion

If o2(t-1) +8%(t) <y2 then A, =0 (No update) (2.3.8)

where the a priori prediction error
&(t) = y(t)—(DT(t)e(t-l) (2.3.9)
Otherwise if 62(t-1) +82(t) >y 2, then the optimum value of A, is non-zero and

calculated according to

A¢ = min(o,vy) (2.3.10)

where
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f o if §2(1) = 0 (2.3.11)
1-f3(t)
g( G =1 (2.3.12)
Vi = J -1_1(—[)-[1-‘\/-1—3([(1)_[(([]2(—-)_1—]] if 1+B[G(-1]1>0 (2.3.13)
+ 1)-
. O if 1+B(M[G(D)-11<0 (2.3.1H
where ¢ is a user chosen upper bound on 4, satisfving
O<ac<l 12315
and
G(1) = dT()P(t- 1D T(1) (2.3.16)
and
2 52(t-
B(v) i G (2.3.17)
S%(t)

The main results of the convergence analysis of the DHOBE algorithm [Dasgupta.

1987] are

(i) {641} is a non-increasing sequence and

. 2.2
lim oz(t) = 02, where 0 <6° <y

t—o00

(i) The eigenvalues of P(t) are upper and lower bounded provided the inputs are
sufficiently rich in frequency and sufficiently uncorrelated with the noise, i.c. if there
exist 1,82 > 0, such that for some M and all t

t+M
Bil< > WoWl<pyI (2.3.18)

1=t+n

where
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W = {u(t), utt-1),...u(t-n-m), v, vit-1). . vit-m| T,

with n being the order of the AR part. and m being the order ot the exogenous part:

then there exist &y, ¢r > 0. such that forall t
a ISP a1

i) [1 G 1s bounded. L.e if the conditions of (2.3.1%) hoid then.

1) The a prion prediction errors are bounded

33ty — {0,
and

by The parameter estimate difference converges to zero. 1.¢.

e -o6t-H it =0
tiv) It the conditons ot (2.3.18) hold and 6* is constant. then

lim 7.[ —

1—300
A detailed denvation of these convergence results and the pertormance of the algorithm 1:.

computer simulations can be found in {Dasgupta. 1987].

Looking at the update equatio.'s of the OBE algorithms, it is clear that the algorithms
are similar to the weighted recursive least-squares (WRLS) algorithm. The next section

shows that the OBE algorithms are in fact special cases of the \WRLS algorithm.
2.4 Weighted Least-Squares and the OBE Algorithms

The conventional weighted least squares algorithm [Ljung, 1983] minimizes the
criterion

T
VT (8) =1T2ai [y(i) - 8Td(i)]2 (2.4.D)

=1
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The need for weighting the observations can arise if, for example, the noise variances are
time varving and in that case. o can be taken to be inverselv proportional to the variance
of the noise. In fact. this choice of ¢y i1s optimal when the noise is uncorrelated and
gaussian. 1.e.. the resulting parameter estimates have the minimum covariance over ¢ll
possible choices of the forgetting tactor. If in addition. 1t 1s required io discount older

vilues. then the following criterion can be used

-
V'T (6) =T;B(T.1)[y(1) ~0Td(i))2 (2.4.2)
1=
where
B(T.i) = M(TDP(T-1.0), 11 T-1 (2.4.3)

which can also be written as

T
BT = []AG e, with B(ii) = o (2.4.4)

J=i+l

The value of 6 which minimizesV't (8), can easily be computed

T “ler
O(T) = {EB(T,i)CD(i)CDT(i)} [EB(T.i)Cb(i)y(i)} (2.4.5)

1=1
A recursive form for 8(t), can be easily developed by usuig (2.4.3) and (2.4.5)

B(t) = 6(t-1) + oy P(t)(D(t)[y(t)—d)T(t)O(t-1)] (2.4.6)
where

P-1(t) = A() P-1(t-1) + oy @)D T(1) 2.4.7)

Thus the purameter vector 6(t) described by (2.4.6) and (2.4.7) minimizes V'(9).

Comparing (2.4.6) and (2.4.7) with (2.3.4) and (2.2.6) of the DHOBE algorithm. it is

apparent that A, in (2.3.6) plays the same role as o in (2.4.6) and (2.4.7). Also (1- A,)
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in (2.3.4) 1s equivalent to Act) in (2.4.7). Thus the DHOBE algorithm minimizes the
criterion

Voo (8) = = 24, 1ly() = 67d(1)] (2.4.8)
=1

where

T
GiT = [ H(L-)\-j)] A;,and Qii = Aj (2.4.9)
j=i+l
Thus the DHOBE algorithm can be described us a weighted recursive least-squares with
forgetting factor algorithm, with the weight oy and forgetting factor At) given by
A = 1- &, and oy = A,
Alternatively, the DHOBE algorithm can be described as a weighted recursive least-
squares algorithm with non-causal weights
ot =quT
For the MVS or MTS OBE algorithms, it is easy to show that the corresponding relations
are
>‘-l

and oy =——

Alt) =
o4(1) o%(t)

Thus these algorithms are also special cases of the WRLS with forgetting factor

algorithm.

One implication of such a relation between the OBE algorithms and the WRLS
algorithms is that it facilitates application of many of the ideas and concepts from the
least-squares adaptive filtering literature. For example, it opens up the possibility of
developing exact iattice and fast transversal filter implementations of the OBE algorithms.
In fact, this equivalence has already been exploited to develop a systolic array

implementation of the MVS algorithm [Deller, 1989].




Another implication is that, even though the formulation of the OBE algorithms is
moiivated by membership-set-theoretic considerations, it turns out that the parameter
estimates (the centers of the ellipsoids) minimize the average weighted prediction error. In
the MTS and MVS algorithms, the choice of the weighting sequence is motivated by a
desire to reduce the size of the bounding ellipsoids. In the DHOBE algorithm, the
weighting factor is chosen to minimize an instantaneous upper bound on the normalized
parameter estimation error. Due to the different choices of the weighting and forgetting
factor sequences, the parameter estimate trajectories of the different OBE algorithms and
the popular exponentially weighted least-squares (EWLS) algorithm (with A(t)=A < 1,
and oy = 1) may differ significantly. To illustrate this point. some simulated examples in
which. the parameter estimation error of the OBE algorithms is markedly lower than that

of the RLS and the EWLS algorithms are presented next.
2.5 Performance in Sinusoidal and Impulsive Noise

In many sitations, the noise process affecting the observations may not be a white
noise process, or may not even be stationary. For example, the noise may have a large
sinusoidal component, as in the case of observations affected by electromagnetic
interference, and in the case of helicopter flight data (Goodwin, 1987]. In some cases.
the noise may be bursty or impulsive, and thus highly non-stationary. It is interesting to
compare the performance of the OBE algorithms to RLS algorithm in these situations.
The first two examples compare the performance of the DHOBE and MVS algorithms to

the RLS algorithm when the noise is an additive sum of white noise and a sinusoid.
Example 2.1
The unknown system is described by an ARX(2,2) model

y(t) =-0.4 y(t-1) -0.85y(t-2) -0.2 u(t) -0.7u(t-1) + v(1)

]




The input u(t) is generated by a pseudo-random number generator which is uniformly

distributed in {-1,+1]. The noise process is generated by
v(t) = A sin (oot) + (1- A )w(t) (2.5.1)

where 4, the amplitude of the sinusoid, satisfies 0< A < 1, and w(t) is white and
uniformly distributed in [-1,+1]. The frequency wg=n/10. The amplitude of the sinusoid
is varied from O to 1 and for each value of A, ten Monte Carlo runs, with 500 points
each. of the RLS and OBE algorithms are performed. The estimation error is measured
by calculating the final mean-squared parameter estimation error (MSPEE) defined by
1 N

MSPEE (db) = lOlog[§;H9i(SOO) - e*uz] (2.5.2)
Figure 2.1 displays the variation in MSPEE for the RLS and OBE algorithms as A is
varied. The mean-square error in the RLS estimates increases drastically as the amplitude
of the sinusoidal disturbance increases. This is because the RLS estimates are biased
when the noise is correlated [Ljung, 1983]. The estimates of the OBE algorithms appear
insensitive to the amplitude of the sinusoid. Unfortunately, one cannot derive any general
conclusions about the superiority of the OBE algorithms in the presence of sinusoidal
disturbances, since such behavior may be specific to the particular ARX(2,2) system

considered.




10 runs
500 data points

DHOBE:
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Figure 2.1 Mean-squared parameter estimation error for the OBE and

RLS algorithms applied to an ARX(2,2) model with a

sinusoidal disturbance

Example 2.2

In order to make some definitive staternents about the bias, the behavior of both the

algorithms 1s investigated tor a simple ARX(1,1) model.
y(t) = x y(t-1) + bg u(t) + v(t) (2.5.3)

The noise v(t) and the input u(t) is as in Example 2.1. The absolute value of x is required
to be less than unity to ensure stability of the system. An expression for the bias in the
RLS parameter estimates for this simple model is derived in Appendix 2A. It is shown
that if [a,b |T are the values of the parameter estimates that the RLS algorithm yields
asymptotically, i.e. these values minimize the mean-squared prediction error, then for the

system (2.5.3)
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—A7~[coscoo - x]

o~

2 _ 2
A §+(1—A)zci)[l sl x}
2 : L 1= X

a=x+

and
b =by (2.5.4)

where 02 and 6,2 are the variances of the white noise w(t) and input u(t) respectively.
Thus only the AR estimate is biased and the bias depends on the noise and input
variances, the amplitude and frequency of the sinusoid, and the true AR coefficient. In
particular, the bias is zero when A = 0, and the sign of the bias is the same as the sign of
(coswg —x ). Unfortunately, a corresponding expression for the bias in the OBE
estimates is difficult to derive on account of the presence of the data dependent updating
and forgetting factor. In order to get some comparison of the bias possible in the two
algorithms, the value of A is now fixed at 1, i.e. the disturbance is a pure sinusoid with
wg = 1/10, and x, the system AR coefficient is varied from +1 to —1. The value of bq is
set equal to unity, and the input u(t) is generated as in Example 2.1. The asymptotic bias
is computed by averaging over 10 Monte Carlo runs of 500 points each. Figure 2.2 and
Figure 2.3 show the variation in the bias in the parameter estimates as x is varied. Itis
clear that the OBE estimates are biased for many values of x . However, the bias in the
AR estimate is significantly lower than the bias in the RLS autoregressive estimate. The
values of the bias in the RLS algorithm, yielded by simulation are very close to the values
predicted by (2.5.4), thus verifying the analysis of Appendex 2A. Unlike the RLS case,
the MA estimates yielded by the DHOBE algorithm seem to be slightly biased.
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Figure 2.2 Variation in the bias of the RLS and OBE AR parameter estimates
as the AR coefficient is varied for an ARX(1.1) system model
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Figure 2.3 Variation in the bias of the RLS and OBE MA parameter estimates

The average final values of [62(t)]? det [P(t)], which is a measure of the final
volume, and [62(1)] Tr [P(1)], which is measure of the sum of the semi axes, for the

DHOBE algorithm, are plotted against x in Figure 2.4. Also plotted are the corresponding
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values for the MVS algorithm. It appears that the ellipsoids are large art the values of x at

which the bias 1s significant.

T
.
) < Vol. (DHOBE)
2 < Tr. (DHOBE)
= o Vol (MVS)
3 - Tr.(MVS)
7
Figure 2.4 Average final volume and sum of the
semi-axes for Example 2.2
Exampie 2.3

In this example the performance of the OBE and RLS algorithms is compared when
the observations are affected by bursts of equal amplitude disturbances. The system

model considered is the same ARX(2,2) model of Example 2.1.

y(t) =-0.4 y(t-1) -0.85y(t-2) -0.2 u(t) -0.7u(t-1) + v(1)

The noise process {v(t)} is now generated as follows. At every instant t, t=1,2,..,1000,

a random number w(t) € [0,1] is generated. If w(t) is greater than 1-prob (where prob is

the preassigned probability of a burst occurring), then v(t+j), j = 0,1,..4, is set equal to
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unity. Thus the noise sequence is composed ot bursts of impulses of burst length =2 3.
The average parameter estimation error MSPEE. was computed over 10 runs ot 1000
points each for the RLS (forgetting tactor A=1, P(0) = 1000I), EWLS (P(0) = 10001, A
=0.99 and A = 0.9), the DHOBE (with a = 0.5, P(0) =I. and 52(0) = 100) and the MVS
(P(0)= 100I) algorithms. Table 2.1, lists the MSPEE values in dBs for two different
values of prob. The quantity in parentheses in the first column 1s the average number of
impuisive noise points in the 1000 point data records. The quantities in parentheses in the
last two columns are the average final volumes and final sums of semi-axes, respectively,
for the DHOBE and MVS algorithms. The performance of both the DHOBE and the
MVS algonithm 13 vastly superior to that ot the RLS and EWLS algorithms when the
number ot bursts is large. However, as prob decreases, the performance ot the RLS
algorithm. becomes comparable, and of course, for very small values of prob, the
parameter estimation error of the RLS algorithm would be lower than that of the OBE
algorithms. It Is surprising to see that, in both the cases, the DHOBE algorithm yields
ellipsoids of smaller volumes than the MVS algorithm. Since the construction ot the
bounding ellipsoid E, from E.; is different for the MVS and DHOBE_algorithms (c.f
(2.2.5) and (2.3.2) ), the DHOBE algorithm,can in principle, yield ellipsoids with

smaller volumes than the minimum volume sequential algorithm.




TABLE 2.1
prob RLS EWLS DHOBE MVS
A=0.99 | A=0.9
0.05 -14.9 -14.05 -7.89 -26.9 -28.83
(239) (4x10-5,0.35) | (1.6x10-*. 0.52)
0.02 -20.37 | -18.14 | -8.6 -22.67 -21.59
(105) (8x10-4, 0.73) (3.6x10°3, 1.16)

Discussion of Simulation Results

In the presence of sinusoidal disturbances, the unweighted RLS algorithm yields

biased estimates. The estimates of the OBE algorithms are also biased, however, the bias

is less than the bias in the unweighted RLS algorithm. The bias in the OBE parameter

estimates appears to go hand in hand with an increase in the volume of the bounding

ellipsoids. In the impulsive noise case, the mean-square error in the OBE estimates 1s

observed to increase as the number of impulses decrease. This behavior is contradictory

to the behavior of the RLS estiinates and deserves further investigation.




2.6 A Modification to the MVS Algorithm

It has been observed that the MVS algorithm does not always yield a bounding
ellipsoid with minimum volume (the minimum over all ellipsoids formulated according to
(2.2.5) ). Such a situation can occur when either, (i) one of the hyperplanes- Hi(t) or
Ha(t) , which define S, does not intersect the bounding ellipsoid E;-j; or (ii) both H(t)
or Ha(t) do not intersect E,.y. In the latter case, the smalilest possible E; is E. itself. In
the former case, the non-intersecting hyperplane, can be replaced by a parallel
hyperplane tangent to E.1. Then, by appropriately redefining the set S, a minimum
volume ellipsoid. which bounds the intersection of E;.| and the new §; can be tound.
which will have a smaller volume than the ellipsoid obtained by the conventional MVS
algorithm. This is the essence of the modification proposed by Belforte and Bona

[Belforte, 1985]. The modified algorithm is developed as follows.
The equanons defining H(t) and Hp(t) are

Hi() = {8 e RN: 8Td() =y(1) - v)
and
Ha(t) = {6 e RN: 0Td(t) = y(1) + 7}
Hi(t) is the lower hyperplane and Hj (1) is the upper one. Assume that Hy(t) does not

intersect E;_;. Then the equation of H;'(t) parallel to Hy(t) and tangential to E,.j is
Hi'(t) = (6 RN: 0Td(@t) =z; )

z) can be found as follows. Assume that Hj'(t) intersects E;.1 at 6¢g. Since Hy'(t) is
orthogonal to the gradient vector &: 6q, for any 6 € Hy'(t)
d Tp-1 T T -1
55[(9—9«- D)'P (t-l)(e—e<t-1))] (0—06g)=2(8g—6(t-1)) P (t-1)(8-86)
8=6,
=0
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Since Hy'(t) is also orthogonal to d(t) and 6-6 lies in Hy'(t)

P (t-1)(8g ~6(t-1) )=nd(1)

for some 1, and since Qg is on the bounaay of E.q,

(8o —6(t- 1) Pt -1)(8 - (1 - D)=n"®T(t)P(t- HD(1) =1

Hence the projection of 8g — 8(t-1) onto ®(t) is of length

L _ T8 -81-1) _ " ®T(HP(t- () DT (HP(t- HD(1)
= - -

VoT (o) JOT (Hd(1) VOT (D(1)

_ JG(t)
JOT (H)D(1)

where, as before,G(t) = ®T(t)P(t-1)D(t). But, since the equation of a hyperplane parallel

to Hy'(t) and passing through 8(t-1) is 6Td(t) = 8T(t-1)D(1), therefore

0T (- (1) — 7

h, =
C o Tmow

Thus
z1 = 0T(t-1)dD(t) — VG(1)

It can be shown similarly that the equation of a hyperplane parallel to Ha(t) and tangent to

E[-l is
Ha'(t) = {8 € RN: 0Td(t) =zp= 0T(t-1)D(1) + VG(t) }

The modified algorithm thus consists of the following steps
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(i) Evaluate z; = 0T(t-1)®(1) — VG(1) , and z2 = 87T(t-1)d(t) + vV G(1)

(i) If z; > v(1) + v, or > < ¥(1) - ¥, then the intersection ot S; and E,j is void and

hence either the model or the noise bound is incorrect.

(i)  Ifzy > v(t)—v, and z2 <y(t) + v, then both Hi(1) and H2(t) do not intersect E,

and hence E; = E.1, is the bounding ellipsoid with minimum volume.

(iv)  Ifzy <v(t) -7y, and z2 > v(t) + v, then both H;(t) and Ha(t) intersect E.1, and

hence E, is constructed as in the MVS algorithm.

(v) If zy > vit) —~ v, and z> > v(1) + v, then only h,.t) does not intersect Ei.;. Hence

replace Hi(t) by H{'(t), and construct the bounding ellipsoid E,.

(vi) If z1 < v(t) - 7, and z3 < y(t) + ¥, then only H»(1) does not intersect E;.;. Hence

replace Ha(t) by H2'(t), and construct the bounding ellipsoid E,.
If step (v) or (vi), the bounding ellipsoid is constructed as follows:

Define
fi = max (z1, y(t) - y] s f2=min [z, y(t) + Y]

and

Then. it is easy to see that in step (v) or (vi), the new set S;' is defined by
S¢=(8e RN:[y()-08Td(®]2<y?)

The ellipsoid which bounds the intersection of E(.; and S| can now be constructed
exactly as in the MVS algorithm. The update equations and the equations tor the
optimum updating gain are exactly as in Section 2.2, except that y(t) is replaced by y (1)

and v is replaced by v.
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The modified MVS algorithm is applied to the ARX(2,2) system of Example 2.1 of
the previous section. The noise sequence is white and uniformly distributed in [-1,+1].
Five Monte Carlo runs (each of 1000 data points ) of the MVS and modified MVS
algorithm are performed The average final volume of the bounding ellipsoid is 1.4x10-4,
for the modified MVS algorithm and 4x10-2, for the MVS algorithm. The average final
sum of semi-axes i1s 0.64 and 2.58 respectively. Thus the modification can cause a

significant reduction in the size of the bounding ellipsoids.

An attempt was made to modify the DHOBE algorithm in the same manner. The
resulting tests in the modified algorithm are as above with the only difference being that
instead of using G(t) = ®T(t) P(t-1) d(t) to construct z; and z> , the quantity
G'(t) = o2(t—1)PT(t)P(t-1)dD(t) is used. When simulated, however, the modified DHOBE
algorithm did not update frequently enough. This is because if ¥ is small for some time
instant t, then 62(t) tends to decrease by a large amount. Then for future time instants k.
when both Hy(t) and Hy(t) intersect E .y , 62(k-1) is much smaller than ¥2 and hence the
sum 62(k-1) + 82(k) is much smaller than ¥2 , thereby not permitting an update. Thus the
modification of Belforte and Bona does not appear to be applicable to the DHOBE

algorithm.




CHAPTER III

ARMA PARAMETER ESTIMATION

3.1 Introduction

In manv areds of signai processing. only samples ot a signal v(t) are available. and 1t
1s required to obtain a model which can describe the signal as accurately as possible. For
example. in speech processing. only samples of speech are available. since it is not
possible to measure the glottal excitation. In seismic data processing. of.en only the
response of the seismic lavers to an excitation is measurable. while the actual preting
input is unknown. In radar and array signal processing. high resolution spectral

esumaunon is often performed by first fiting a model to the rece:ved signal.

A powerful and increasingiv popular wav to model the signal of interest. 1s to
assume that it is the output ot an IIR filter dnven by unknown white noise w(t
[Friedlander. 1982]. The signal v(t) is thus modeled as an autoregressive moving
average( ARMA) process of the form

Vit =a, vi-D+o+ a, yiteny + wit) + ¢ wit-1) +.+ ¢, w(t-1) (3.1.D
Fiting this ARMA model to the measured data y(t). t =1,2... . requires the estimation ot

the parameters d: ... 4, . ¢y ... C, .

Even in cases when the input 1$ known. as tn control applications. the need for

ARMA. or more accurateiv ARMAX parameter esumanon arises. For exampie a DARMA
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model with input and output measurement noise is equivalent to an ARMAX model. This
can be shown as follows. The DARMA process [Goodwin. 1984] can be expressed in
the form

A(qh) y(v = B(gHu® (3.1.2)
where A(@) =1-a,q'-a;q? .-a,g™ B(@h=by+ bygl-byqi- . +byqm
and q! is the delay operator. The input {u(t)} is assumed to be measurable. If the inputs
and outputs are subject to white measurement noise. then the observed outputs y,(1) and
observed inputs u,(t) are given by

V(U= vt + p(t) (3.1.3:)

U (1) = Ut + st (3.1.3b)
where p(t) and s(t) are assumed to be zero mean. uncorrelated white noise processes with
variances O, and O,° respectively. Substituting (3.1.3) in (3.1.2) gives

A@@Y y, (v = B@Dug, () +AQ1) p(t) - B(q'h st (3.1.4)
Bv the spectral factorization theorem [Astrom, 1986]. the noise terms in (3.1.4) can be
replaced by a unique spectrally equivaient minimum phase process. so that (3.1.4})
becomes an ARMAX process

Al y, (0 = Bl@h uy, (0 + D(g 1) w(n (3.1.5)
where

o2 DiziD(z1 =0t A(2)A( 27 - 62 B(z)B( 21 (3.1.6)
The DARMA process with input and output measurement noise 1s thus a special case of

an ARMAX process.

Many methods for the estimation of ARMA parameters have been proposed in the
literature, partcularly from the spectral estimation viewpoint. Among the more recent are
Cadzow's overdetermined rational equation method [Cadzow. 1982]. the spectral
matching technique of Friedlander and Porat [Friedlander. 1984], and the extended

Yule-Walker method of Kaveh [Kaveh, 1979]. A common feature of these methods 1s the
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use of the sample autocorrelation sequence of the output process y(t). In the context of
svstem identification, the extended least-squares (ELS). the recursive maximum
likelihood (RML) and multi-stage least-squares algorithms have been used to recursively
estimate ARMA parameters [Ljung, 1983, Mayne, 1982]. The ELS algorithm uses the »
posteriori prediction error £(t), as an estimate of w(t). The regressor vector is formed
from v(t-1)..., v(t-n) and €(t-1),.., &(t-r). The standard RLS algorithm is then emploved
to update the estimates. The algorithm is conceptually simple but restrictive 1n the sense
that convergence of the algorithm can be assured only if the underlying transfer function
Hig-y=1/C(q?) - 1/2 is strictly positive real (SPR). with q-! being the delay operator
and

Clgh=1+¢ql+caq? +.+cq” (3.1.7)
The wransfer funcuon H(q-!) is SPR if there exists an € such that

Re[H(e)®)] 2 £ > 0, for all ® € [-x,x]

The RML algorithm. which uses a filtered version of the regressor vector used in the

ELS algorithm. does not require H(q'! ) to be SPR. However the estimates have to be

monitored and projected into a stability region to ensure convergence[Ljung. 1983].

In this chapter. the DHOBE algorithm 1s extended to the ARMA case. For the ARMA
parameter estimation problem. since the input sequence {w(t)} is unobservable. the
DHOBE algorithm cannot be applied in its present form. However, by assuming that the
input white noise is bounded in magnitude, the DHOBE algorithm can be extended in a
manner similar to the ELS algorithm. The simpler optimization criterion of the DHOBE
algorithm makes the convergence analysis of the extended algorithm tractable. The
analvsis is performed by imposing a bound on the sum of the magnitudes of the MA
coefficients. This is sufficient to ensure that the true parameter vector 1s contained in all
the opumal bounding ellipsoids. The algorithm thus gives 100% confidence regions tor

the parameters at every instant. The ELS or RML algorithms. 1n contrast can vield
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confidence regions only asymptotically. A uniform bound on the a posteriori prediction
error of the extended DHOBE algorithm is derived. In conmast. even though the a
posteriori prediction errors are generated in a stable fashion in the ELS algorithm([Ljung,
1983]. it is difficult to obtain an expression for even the asymptotic bound. if such a
bound exists. By imposing a persistence of excitation condition on the regressor vector.
the a priori prediction error of the extended DHOBE algorithm is shown to be bounded
and the parameter estimates are shown to converge to a neighborhood of the true
parameter vector. Simulations show that the performance of the algorithm is comparable
to the EL.S algorithm as far as the mean-squared parameter estimation error (MSPEE) 15
concerned. It has also been observed . in a number of examples. that the wansient

performance of the extended algorithm is superior to the ELS algorithm.

3.2 Extension to ARMA Parameter Estimation

The ARMA model descnibed by (3.1.1), can be rewritten as

w(t) = y( - 8*Td'(1) (3.2.1
where 8%, the vector of true parameters. and @'(t) are defined by

B*=(a; .2 ...3,,Cy,Ca s & T

() = vt-1), .., y(t-n), w(t-1) , ..w(tr) ] T
Here again. w(t) is assumed to be bounded in magnitude. i.e. there exists positive 7y,
such that

fw(t) | £ v, (3.2.2)
Since the values of the noise sequence {w(t) } are not available. the regressor vector
d'(t) is not known exactly. If, however, at time t, an estimate of 6*.

B ={ a;(0). .., a, (1 ¢, (1), ..c, O]T (3.2.3)

is available. w(t) could be estimated by the a posteriori prediction error(also called the
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residual error by some authors )

e = vy - 8T (MD() (3.2.4)
where

O ={yt-1), .. v(t-n),gt-1), ..etn]T (3.2.5)
Now just as in the ARX case, define for some suitable y 2, the set

S;=(0: (ym)- 6TP())2 < y2,86e Rn+r}
and the bounding ellipsoid

E=(8eR™ : (8-06() P'(®)(6-0(1) < o1 ) (3.2.6)

The update equations for 6(t), P(t) and o2(1) are as in Section 2.3. with the only

difference being that the regressor vector is now given by (3.2.5).

As in the OBE algorithm. the bounding ellipsoids are optimized by choosing A, to
minimize 64(1). In order to facilitate the subsequent analysis, the initial conditions are

modified to

(U9
%)
~

P(0) =M1 8(0)=0,and ©2(0)<y? (

n+r?

where M>>1. and L., is the identity mawix of dimension n+r.

This choice of initial conditions ensures that the initial ellipsoid E, will contain the
true parameter vector 6* and more imponantly, as shown in Appendix 3A. simplifies
the optimum forgetting factor XI* formula to

If 62(t-1)+82(1) < 42 then L* =0, (3.2.8)

otherwise
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1-
" b if G(1) = 1 (3.2.92)
AT =

— [ G ] if G(1) # 1 (3.2.9b)

-G 1+ B() ( G(Y) -1)
where

2. 62(t-1)
B 4 == o (3.2.9¢)
8°(v)

Remarks

(1) It is shown in Appendix 3A that if 62(t-1) + 82(t) > ¥2 then 7~ given by (3.2.9)

satisfies

=0

doz(t) |
dkl 7\[=?»['

and furthermore 0< ;" <1. Thus unlike the case in Section 2.3, no upper bound need be

imposed on the forgetting factor.

(2) Since ©2(t) = 6%(t-1) if &," = 0. any non-zero value of 7., which minimizes 63(1).
will cause 62(t) < ©2(t-1). Thus choosing A,* to minimize o2(t), causes {G2(t)}to be a

non-increasing sequence.

The recursive relations (2.3.5) — (2.3.7), the initial conditions (3.2.7). the selecuve
update strategy (3.2.8) and the forgetting factor determination formula (3.2.9) form the
Extended Optimal Bounding Ellipsoid (EOBE) estimation algorithm. The choice of the
threshold y? will become clear from the analysis below. The algorithm retains the
discerning update strategy and the modular adaptive filter structure of the DHOBE

algorithm.
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3.3 Convergence Analysis of the EOBE Algorithm

The main difficulty in the analysis of the EOBE algorithm arises from the presence of
the a posteriori prediction errors in the regressor vector. Unlike the OBE algorithm, in
this case. boundedness of w(t) does not guarantee that all the sets S, . t=1.2.. will contain
8*. The first step in the analysis is to find conditions under which this happens. The
minimization of 62(1), at every time instant, and the choice of initial conditions (3.2.7),

facilitate the characterization of the behavior of the a posteriori prediction errors.

Lemma 3.1. For the EOBE algorithm, if o2(t-1) + 82(t) > y-. i.e.. if an update
occurs at ime instant t. then
(i) o(1) + €X(1) = V2, (3.3.1)
(ii) £2(k) < €2(t) for all time instants k <'t, (3.3.2)
and if t+j is the time instant at which the next update occurs then
(iii) e2(k) < €2(v)forall k < t+j. (3.3.3)
Proof:
(i) It has been shown in Appendix 3A. that if 62(t-1) + 82(t) > Y2 then. the optimum
forgetung factor 2%, satisfies

d oz(t)

da A=A
t t- ™

= 0 (3.3.4

Taking the derivative in (2.3.5) and using (3.3.4) vields

., (1-h) 81 A8° 0 G
-Y'_ G"(t_l) __A_____ = - > (3.3.53)
1-A +A G(1) (1-A+ A G )

which can be rewritten in the form

» s , (1 -l,):-ka(t)
Voo (-1 = 8%(t) - (3.3.5t

(1-2+AG®))
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In (3.3.5) and in the remainder of the chapter, when there is no risk of confusion, the
optimum forgerting factor A,~ will be denoted by A,. The a posteriori prediction error
&(t) = y(1) - 6T(OD(t) = y(t) - 8 T(t-1)D(1) - A, DT(1) P()d(1) (1)
Thus
e(t) = [1- A, DT(1) P()D(1)] &(1)
Multiplying P(1) in (2.3.7) on the left by ®T(t) and right by ®(t) vields
1-A,

1A & (OPOD() = ———
1—X1+AKG(t)

Thus

1-A,
e = d(t) (3.3.6)
1- ll+ XIG(t)

Note that the non-negativeness of G(t) implies that £2(t) < 82(t). Substituting (3.3.6) in

(3.3.5b) and rearranging terms yields

2 ) ) k,zG(t) e (3.3.7)
(I-A) ¥~ (1-k) 67(t-1) = (1-A) €°(t) - -———
1-A
t
Now using (3.3.6) in (2.3.5) gives
~ A )\.;—,G([) 4

o = (1- }-.l)oz(t-l)+ }.ly:—}.[e'(t)— € (1) (3.3.8)

1- A

L

Finally, subrracting (3.3.8) from (3.3.7) gives (3.3.1).

(i) Case 1 If k <t,is an updating instant. Then (3.3.1) gives

o2(k) + €xk) = ¥? (3.3.9)
But since {o%(1)} is a non-increasing sequence, (3.3.9) and (3.3.1) together would imply
that

e2(k) < eX(v)

Case 2 If k < t, is a non-updating instant. then €2(k) = 82(k) and so bv (2.3.8).
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o2(k-1) + €2(k) < ¥2, and since 02(t) is non-increasing, €2(k) < €2(t).

(iil) Since A, . k = t+1. t+2,... t+j-1, are all zero, 62(k) = 62(1), for all t < k < t+j. And
because k is a non-updating instant, o2(k-1) + €2(k) = 62(1) + €2(k) < ¥-, and so

(3.3.3) follows.

Remark

Lemma 3.1 shows that the the sequence u: squared residual errors evaluated at the
updating instants is non-decreasing. Furthermore, the squared residual error at anv
non-updatng instant 1s not greater than the squared residual errors at the updaang instants
immediately prior and after the non-updating instant. This characterization of the squared
residual errors is useful in deriving sufficient conditions under which the convex

polvtopes S, and E, will contain 6*.

Theorem 3.1.The sets S, and consequently the ellipsoids E. t = 1,2... will contain the
rue parameter, if
() E, conrtains 6% . (3.3.10a)

(11) The rue moving average coefficients satisfy

T
Zlcil < 10 (3.3.10b)
1=1

(ii1) The threshold v satisfies
[

yol Hilcil}
> =1

T2 . (3.3.10¢)
- Iyl
i=l
Proof. Let the induction hypothesis be 8* € E_,. Then defining
Vit =0 (-8" )T Py (B(1) - 07) (3.3.11)

and recalling the definition of E yields
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V(t-1) < o2(t-1) (3.3.12)
and since P-1(1) is positive definite for all t. 62(t-1) 2 0. Now using (3.2.1) and (3.2.5)
vields
y() = 8*T d(1) = C(gh)[w(n] - (C(@h) - D[ )] (3.3.13)
where the operator C(q-!) has been defined in (3.1.7). Defining n(t) = C(q-!){w(t)] then

vields
ly(t) - 8*T D) 1< In(t) | +1cye(t-1) + ¢y E(-2)..+ ¢, E(1-T) |
But
In(t)! £ v, forallt
where
r
y & oy a+edic (3.3.14)
i=1
Hence
ly(t) - 0*T ()1 < ¥ + (lcylle(t-DI + eyl le(t-2)1+ ...+ Ic | le(t-r)l ) (3.3.15)

But by Lemma 3.1, if t-j 1s the updating instant immediately preceding time instant t. then
le(t-DI < lg(t-j)l for 11 <t
Thus

v =-0*¥T Dl <y = let- Y eyl (3.3.16)
1=1

Now €2(t-j) = ¥2 - 02(t-j) = ¥2 - 62(t-1). By the induction hypothesis. 62(t-1) 2 (.
Hence

le(t- 1<y
and so

T
ly(H) =0T D <y + v gl
=1

So S, will contain 6* if

T
VYl <y (3.3.17)
1=
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The inequality (3.3.17) will hold iff (3.3.10b) and (3.3.10c) are true. Assuming
(3.3.10b) and (3.3.10c¢) thus guarantees that for all time instants t
(y@) - 8*Td() )2< 2 (3.3.18)

Using (2.3.6) and (2.3.5). it is easy to show that
2 A (=38

V(1) = (1= 2)V(t-D+ A (y(0) - 8*T () o (3.3.19)
Now using (2.3.5) in the above equaton yields
V@) - o2 £ (1- X)) (V- -oXt-1) )+ 2 [ (y() - 6*T d(1) )2 - v7]
and so from (3.3.18) it follows that
Vi - o2t £ (1-A) ( V(1) - o(t-1)) (3.3.201
Finally. by (3.3.12). it follows that
V(t)-o2(t) £ 0 (3.3.21)

i.e.. E, contains 6*, and 62(1) is non-negative for all t.

Remarks

(1) The condition (3.3.10b) implies that the noise sequence n(t) = C(q-1)[w(t)] should
not be " too colored ", It is interesting to see how this this condition relates to similar
conditions which appear in the convergence analysis of other parameter esumauon
algorithms. A sufficient condition for convergence of the ELS algorithm 1s that the
ransfer function [1/C(q-!) — 1/2] be SPR. It is shown in Appendix 3B that. for this

transfer functon to be SPR. it is necessary that

T
,
ZIcil“< 1 (3.3.22)
i=1

Thus if (3.3.22) is not satisfied. the transfer tunction is not SPR and so the ELS
algorithm cannot be guaranteed to converge. Coincidentally enough. the condition
(3.3.10b) is identical to the Strictly Dominant Passive (SDP) condition [Dasgupta, 1987|

which appears in the analysis of some signed LMS algorithms. In Appendix 3B. it is also
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shown that if (3.3.10b) holds then [1/C(q-!) - 1/2] is SPR. However, the converse is not
true. For example if C(q1)=1+0.8q!+0.15q1-0.15q2 then {1/C(q!) - 1/2] is
SPR. but C( q!) does not satisfy (3.3.10b). Thus this condition is more restrictive than

the SPR condition.

(2) Selection of the right " noise bound" 2 is made possible by (3.3.10c). The user
would. however, need to have some knowleage of the magnitude of the true moving
average coefficients. It is interesting to see that as the moving average filtering of {w(1)}
increases (X[c;! increases). the bound 2 is required to increase. to guarantee that the true
parameter is contained in all the sets S, and ellipsoids E, . Simulation results show that
overestimation of y2 has very little effect on the parameter estimates (centers of the

bounding ellipsoids), though it may have an adverse effect on the size of the bounding

ellipsoids.
(3) The theorem shows that V(t) < 62(1) for all t, Since 6%(0) < y* . and {02(1)}is non-
increasing. the theorem provides instantaneous bounds on the normalized parameter

esumation error V(1).

(4) The conditons (3.3.10b,3.3.10c) are not necessary conditions and the algorithm has

been observed to perform well in several examples where these conditions were violated.

The following result follows straightforwardly from Lemma 3.1 and Theorem 3.1.

Corollary 3.1. If the conditions of Theorem 3.1 hold then

[99]
(U]
[ 89
(O8]
£

(a) lim eb(tj) exists (3.3.

{ —oo

where |t.} is the subsequence of updating instants of the EOBE algorithm. and
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(b) Unitormly bounded a posteriori prediction errors
€2(1) £ Y2, for all time instants t (3.3.23b)
Boundedness of 82(t), the a priori prediction error. and convergence of the
parameter estimates to a neighborhood of the true parameter can be assured, by requiring
the regressor vector to be persistently exciting. The next lemma relates the positive

definiteness of P-1(t) to the richness of the regressor vector ®(1).

Lemma 3.2. If there exist positive &3 and N such that, for all t

t+=N
D oo’ 2 a1 > 0 (3.3.24a)
i=t
then there exists a positve ¢4 such that
P-i(t) 2041 >0 (3.3.24b)

Proof of the lemma is the same as that of Theorem 4.1 of [Dasgupta. 1987]. it is thus

omitted here.

Remark. The positive definiteness of P-1(t) implies that the eigenvalues of P(t) are upper

bounded.

Theorem 3.2. If the assumptions of Theorem 3.1 are satisfied and (3.3.24a) holds then

the EOBE algorithm ensures :
(a) Parameter difference convergence

lim 116(1) - 8(t-k) Il =0 (3.3.25)

| =300
for any finite k.
(b) If.in addition. the process (1.1) is stable then the algorithm vields asymptoucally

bounded a priori predicuon errors
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W — [0.77] (3.3.26)

(c) If the moving average coefficients are further restricted to saasfy

L 2
[Zlcil ] <o0s
1=1

then an asvmptotic bound on the parameter estimation error can be obtained

18(0-6" 12— [ 0. 27 (1+Z e, 1)/ at, | (3.3.27)

where v,,- and o, are as in (3.2.2) and (3.3.24b) respectivelv.
M 4 b

Proot.
{a) From (2.3.6) and (2.3.7)

. TP D o 8
e - ea-Hyilm = -~ (3.3.28)
(L2 +% G@®)”

J
J

<e  Ptl)} ——— (3.3.29)
(1-4 +A GO
where ¢, {P(t-1)} is the maximum eigenvalue of P(t-1). and !l.Il denotes the euciidean

norm. To see how (3.3.29) follows from (3.3.28). consider any positive semi-definite

svmmetric matrix A and vector x. Then

Jar=xTAAT Ax= y’I-Ay

where v = Ax. But

Ay 2 Eminl AT ¥y

where e, refers to the mimmum eigenvalue. Since e, (A) = 1/ e (471 hence
_\'T.\' SeqnaxlA ]xTAr

and thus
A< €maxl A IxT Ax




Now multiplying both sides of (3.3.5a) by A, . and using (2.3.5) yields

LD 80 G (3.3.30)

G:(I) = cz(t-l) - -
( l—kl +7u[ G@))”

The non-negativity of 62 (1) therefore implies

‘ 20 8% Gh) . .
: = o“(0)- o (v < 00 (3.3.31)

T (1-h +h G

Hence

800G
-0 (3.3.32)

um K . R
o o (1-/_,+/-.,LG(1))

If (3.3.24a ) holds then by Lemma 3.2, e, {P(t-1), the maximum eigenvalue of P(1-1).
1s bounded for all t . and hence (3.3.29) and (3.3.32) vield

e -6a-nHil —0 (3.3.33)
Applving the Minkowski inequality to 8(t)-8(t-k)ll and using (3.3.33) completes the

proof of (3.3.25).

(b) Stabiiity of the process (3.1.1) and the boundedness of w(t) implies that the ourputs

vit) are bounded. Hence from (2.3.16) (3.3.23b). and Lemma 3.2, it foliows that

Giy<e  (P-D}ry + n max vi(Q)] < e
t-n €1<1-1

where n 1s the order of the AR process and r is the order of the MA process. It can now
be shown. just as in Theorem 3.2 of [Dasgupta. 1987]. that the a priori prediction errors

satisfv (3.3.26).

(¢) From (32.3.16)
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Assuming

I 7

[Zlcil] <05

i=1

then vields
T 2 22, -
(y(t)-e* (D(t)) S2Y+e7(t-))

Substituting in (3.3.19) and using (3.3.6) gives

V(= (1-A,)V(t- 1)+A{2y‘3 +e- (1 —j)—ez([)—?‘—q(ﬁel(z) (3.3.34)

From Lemma 3.1. €2(t-j) < €%(1), where t-j is the updating instant prior to time instant t.
Thus
V(0 -2Y2 < (1- &) [ V(t-1) - 292 ]
For large enough t. the term on the right hand side goes to zero and hence for large
enough t
V(y=(8 (- 8*)TPI(r) (B(1) - 6%) < 2y2

And so0 (3.3.27) follows from Lemma 3.2 and (3.3.14).

Remarks:

(1) The results of Theorem 3.1. and the results (3.3.25), (3.3.26) of Theorem 3.2. do
not require the process to be stable (A(q")=1-a,q! —a,q~~... —a, q" 10 be
Hurwitz). However if the process is vnstable. then the a priori prediction errors will
become very large. thereby causing overflows. In addition. on account of finite precision
effects. the matrix P(1) may not stay positive cefinite, thus invalidating the notion of
bounding ellipsoids and causing the algorithm to fail. In this situation. the ELS algorithm

will fail. too.

(2) Theorems 3.1 and 3.2. do not impose any statistical properties on the input

sequence{w(t)}. However our simulation experience has been that the parameter




estimates are biased if the input is not white. Of course, such is aiso the case, for the ELS
algorithm. The EOBE algorithm uses the boundedness property of the inputs to construct
confidence regions (ellipsoids) for the parameters. irrespective of the color of the inputs.

This feature is absent in any of the exisung ARMA parameter estimaton algorithms.

(3) The upper bound given by (3.3.27) is usually looser than the bound
10 (1) - 6% 112 < o%(t) / 0y, vielded by (3.3.21).

3.4 Simutlation Studies

Simulations have been performed to investigate the performance of the EOBE
algorithm vis a vis the ELS algorithm. In this paper, we present simulation results for
three exampies- a broad band ARMA (3,3) process, a narrow band ARMA(2,2) process
and an ARMAX(3,3,2) process.

Example 3.1 Broad band ARMA (3,3) process
The output data {y(t)} is generated by the following difference equation

y() =-0.4 y(t-1) + 0.2 y(1-2) + 0.6 y(t-3) + w(t) — 0.22 w(t-1)

+0.17 w(t-2) - 0.1 w(t-3)

The noise sequence {w(t)} is generated by a pseudo-random number generator with a
uniform probability distribution in [-1,1]. The upper bound y ¢ was set equal to 25.0. and
62(0) = y2-0.1. The parameter estimates were obtained by applying the EOBE algorithm
to 1000 point data sequences. Twenty five runs of the algorithm were pertormed on the
same model but with different input noise sequences. The average squared parameter

error L, (t). 1s computed for the AR coefficients according to the tormula

25

Liv= 33 1,1(0

1=1

where |, (1), the squared AR parameter error at ume t for the j'th run. is defined by
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n

L=, @0-a)

i=1
with a; and aj(t) being defined by (1.1) and (3.3), respectively. The average squared
parameter error L,(t) for the MA coefficients is defined analogously. Fig. 3.1 and Fig.
3.2 display the average squared estimation errors for the AR and MA parameters using
both the EOBE and the ELS algorithms. The curves show that the performance of the two
algorithms is comparable. The average number of updates for the EOBE algorithm was
160 for 1000 point data sequences. Thus only 16% of the samples are used for updates.

as compared to the ELS algorithm which updates at every sampling instant.

The effect of different choices for the upper bound ¥2 on the performance has also
been studied. For each value of 2. the asymptotic mean-squared parameter estimation

error (MSPEE). was computed over 25 runs of the algorithm, according to the formula
| 25
MSPEE = Z I 6,(1000) - 6° I
1=

where ej(lOO()) 1s the parameter estimate at the 1000'th iteration. in the j'th run. The
lower bound on Y- as calculated from (3.3.10¢) is ¥2 > 8.54. The second column of
Table 3.1 lists the different values of MSPEE obtained when v< is varied from 0.5 to
100. In each case. 02(0) = y2 — 0.1. The third column lists the average number of
updates. The fourth and fifth columns enumerate the average number of times the true
parameter is not contained in S, and E, respectively. The last two columns provide
measures of the average final volume and average final sum of semi-axes respectivelv. It
is clear that the centers of the bounding ellipsoids are insensitive to the value of ¥-. since
the tap error is almost constant. though the final size of the ellipsoids is very sensitive to

+2. This can be explained as follows.

The update equations (2.3.6) and (2.3.4) for the parameter estimates and the matrix

51




P-! | can be affected by 2 only through the forgeuting factor A,. From (3.2.8), it is clear

that the update decision depends on whether 82(t) is greater than or less than [y2 —

o2(1-1)). If 82(1) is greater than [y2 — 62(t-1)] then, from (3.2.9), the calculated value of

3., again depends on 2 only through [¥? — 6%(t-1)]. But from (2.3.5), ¥ —02(1) depends

on ¥* only through the quantities 2 — 62(t-1), ¥ — 62(1-2}, .., ¥> - 62(0). So for all time

instants t, y2 —02(t) is a complicated function of the data, 6(0), P(0), and [y- — 62(0)].

and consequently, A,, P(t) and 6(t) depend on ¥2 only through [y?> — 62(0)]. Thus, since

this difference is constant in the above simulations, the parameter estimates are unaffected

by the value of y2. However, the final size of the ellipsoids depends on 62(t) , and since

> —62(1000) is constant for all values of ¥2, the final size is proportional to y-. When v-

= 0.3, 02(1000) is negative and hence the final ellipsoids do not exist.

TABLE 3.1
v2 T Avg.  Avg. Avg. Avg. final Avg. final sum
(dB) updts  9%e S, 6*e¢ E, volume of semi-axes

0.5 -1534 156 292 949 -

1.0 -1534 156 13 0 0.22 10.46

20 -15.36 156 0 0 2.6x10% 74.08

50 -15.34 156 0 0 3.4x107 26491
250  -15.35 156 0 0 2.1x1012 1536.92
100.0  -15.39 156 0 0 1.0x1016 6303.29

The performance of the algorithm. when the noise sequence {w(t)}has a gaussian

distribution, was evaluated in a similar fashion. A constant value of ¥* =25 was used and
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the standard deviation of the input was varied. The results for 25 runs of the algorithm

are shown in Table 3.2. It is clear that the unbounded noise has marginal effect on the

parameter estimates.
TABLE 3.2
S.D T Avg. Avg. Avg. Avg. final Avg. final sum
of input (dB) updts  6%e S, 0*e E, volume of semi-axes

0.5 -4.9 90 0 0 5.6x1012 1574.6

1.0 -5.95 105 0 0 4.89x108 3334

2.0 -5.98 114 12 26 1.47x107 19.5

5.0 -6.29 119 323 965 - -

The tracking capability of the EOBE algorithm was compared with that of the ELS
algorithm (with forgetting factor=0.99). The same model was used to generate 400 data
points. The parameters were then changed by 150% and the next 400 points were
generated. Finally the last 200 points were generated by using the original parameters.
The average squared parameter error was evaluated over 25 runs and is shown in Figure
3.3. Even though the formulation of bounding ellipsoids is based on the assumption that
the parameters are constant, the simulation results show that the algorithm is able to
accommodate changes in model parameters. Analysis of the tracking ability of the

algorithm is the focus of Chapter V.

As mentioned earlier, the transient behavior of th¢ EOBE algorithm has been

observed to be superior to that of the ELS algorithm in a number of examples. To




demonstrate this. ten Monte Carlo runs of the EOBE and ELS algorithms are performed
with data records of 50 points each.The parameter estimation error at each instant, (8™-6
() )T (8*-8 (1) ) and the a priori prediction error are averaged over the ten runs and
displaved in Fig. 3.4. and Fig. 3.5 respectively. The parameter estimates of the ELS
algorithm tend to wander outside the stability region in the ransient stage. thus causing
unacceptably high prediction error bursts. The inherent stability mechanism of the ELS
algorithm. however. ensures that the estimates do return to the stability region. The

ransient esumation error of the EOBE algorithm. in contrast. is well behaved.

Example 3.2 Narrow band ARMA (2,2) process
The output data {y(t)} is generated by the following difference equatdon

v = 1.4 v(t-1) - 0.95 y(1-2) + w(t) - 0.86 w(t-1) + 0.431 w(1-2)
Note that in this case. condition (3.3.10 b) of Theorem 3.1 is violated. The noise
sequence is uniformly disaibuted in {-1.0,1.0], as in the first example. The upper bound
v <was set equal to 25.0. The average squared AR and MA parameter estimation errors
are calculated over twenty five runs and plotted in Fig. 3.6 and Fig. 3.7 respectivelv. The

average number ot updates was 78 for 1000 point data sequences.

For this example too. different values of the upper bound y < were used and no
significant difference in the quality of estimates. number or updates or convergence rate
was observed. Thus. it 1s verified once again that a precise knowledge of the upper

bound 1s not a prerequisite for satisfactory performance of the algorithm.

Example 3.3 ARMAX(3.3.2) process

viy = 0.6vie-1) =0.3v(t-2) + 0.25v(t-3) +3.8u(t) —1.8u(t-1) +0.7u(t-2)

+ wil) + 0.4w(t-1) -0.1w(t-2)
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The measurable i_nput sequence {u(t)}and the non-measurable input/noise sequence
{w(t)} are uncorrelated white noise sequences uniformly distributed in [-1,1]. The EOBE
algorithm can be used for ARMAX parameter estimation. by simply increasing the
dimension of the parameter vector and extending the regressor vector to include the
observable inputs. The analysis performed in the previous section is still valid. In the
ARMAX estimation problem, if estimates of the MA coefficients (the coefficients of
C(q-1) ), are not required, then the OBE algorithm can also be used, by modeling the
system with an ARX model. For the EOBE algorithm, y2=10 and ¢%(0)=10 . For the
OBE aigorithm, y== 2.5, and 62(0)=10. P(0) = I, in both cases. Ten Monte Carlo runs
of 1000 data points each were performed for the EOBE and OBE algorithms.The average
final parameter estimation error for the EOBE algorithm was 0.157 and the corresponding
error for the OBE algorithm was 0.69. For the EOBE algorithm
(1) The sample mean

E[6(1000)] = [0.53, -0.27, 0.24, 3.79, -1.52, 0.63. 0.45, -0.07]T
(ii) The average final volume = 6.2x1010
(i) The average final sum of semi-axes = 498.47
(iv) The average number of updates = 61
For the OBE aigorithm
(i) E[6(1000)] = [0.76, -0.42, 0.27, 3.82, -2.41. 1.11)T
(i1) The average final volume = 224.25
(iii) The average final sum of semi-axes = 112.47

(iv) The average number of updates = 128

Thus the parameter estimates of the OBE algorithm are biased. For the OBE
algorithm. the noise v(t) = C(q 1)[w(t)]. and the correlation in v(t) is responsible for the

bias. The EOBE algorithm in contrast, yields unbiased estimates. however the confidence
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regions for the parameters are larger than the confidence regions vielded by the OBE

algorithm.

3.5 Concluding Remarks

The distinctive features of the EOBE algorithm are (i) the discerning update strategy,
(11) the uniform boundedness of the a posteriori errors and, (iii) the fact that the true
parameters are guaranteed to lie in the bounding ellipsoids at every time instant.
Unfortunately. the size of these bounding ellipsoids is very sensitive to the choice of
threshold y2. Simulations show that the threshold can be taken much smaller than the
theoretical minimum. thereby obtaining tighter confidence regions, without causing the
true parameter vector to slip out of any of the sets S,. In an effort to obtain smaller
ellipsoids. the MVS algorithm was extended, just as in Section 3.2. Unfortunately on
account of the more complex optimization criterion used in the MVS algorithm, the
counterparts of Theorem 3.1 and Theorem 3.2 could not be derived. Simulation studies
indicate that the extended MVS algorithm does vield smaller bounding ellipsoids.
however. the parameter estimates are biased. It is conjectured that the observed
unbiasedness of the EOBE parameter estimates is due to the optimizauon criterion which

1s an upper bound on the normalized parameter estimation erTor.
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CHAPTER 1V

FINITE PRECISION EFFECTS

4.1 Introduction

The behavior of adaptive filtering algorithms in limited precision environments has
attracted an 1increasing amount of attention lately. The motivation is, perhaps, the
discrepancy between the theoretical infinite precision behavior and the actual performance
of the algorithms when implemented in hardware or simulated on computers. Finite
word-length computations can cause numerical inaccuracy in the results and numerical
instabuity [Cioffi, 1987]. In the case of the RLS algorithm, it has been known for quite
some time that the recursion for the covariance matrix inverse is numerically unstable
and several factorization methods have been developed to stabilize the recursion
[Bierman, 1977]. Numeric instability can cause some of the variables in an adaptive
filtering algorithm to become unbounded fairly rapidly, as in the case of fast least-
squares algorithms [Cioffi. 1984]. On the other hand. the accumulation of round-off
errors can cause the widely used LMS algorithm, and even the stabilized RLS algorithm,
to diverge after millions of iterations. In the case of real time signal processing, at a
sampling rate of 8§ kHz, this amounts to only a few minutes of processing. It is therefore
imperative to consider the effects of finite precision computations when analyzing or

designing adaptive filter algorithms.

The 1ssue of finite word-length effects in MSPE algorithms has begun to receive
attention only recently. In [Walter, 1988], the potential numerical problems which can

arise with the exact cone updating (F”U) algorithm are discussed and a robust
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modification is suggested. In this chapter, finite precision effects in the DHOBE
algorithm are studied through simulations and by analyzing the stability properties of the
error propagation in the algorithm. Since the update equations of the DHOBE algorithm
are very similar to the RLS algorithm, the potential problems which can arise due to the
effects of finite word-length in the RLS algorithm are discussed in Section 4.2. In
Section 4.3, a sensitivity analysis of the forgetting factor determination formula in the
DHOBE algorithm is performed, and a modification is suggested to increase the
robustness of the formula. An analysis of the error propagation in the DHOBE algorithm
is performed in Section 4.4 by studying the stability properties of two coupled nonlinear
difference equations. The equations are shown to be BIBO stable and consequently the
error in the estimates is bounded. The effect on the bounding ellipsoid of the errors due to
tinite word-length computations, in one iteration of the algorithm is studied in Section
4.5. In Section 4.6, the fixed point implementation of the algorithm is described and
simulation results are presented which show that the DHOBE algorithm vyields
consistently good estimates over a large range of word-lengths. In particular, the

performance 1s superior to that of the RLS algorithm for small word-lengths.

4.2 Finite Word-length Effects in the RLS Algorithm

The update equation for the parameter estimates of the RLS algorithm with forgetting
factor A is given by
61r) = B — )+ K()D(1) y(1) - DT (1)6(1 - 1) (3.2.1)

where the Kalman gain K(t) is defined by

_ P(1—1)d(r) n
A+ (P - D)

19
|9

K(t)

and the matrix update equation is given by
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Pt -DOWODT ()P -1)

: (4.2.3)
A+ ()P~ 1DD()

P(z)=% F-1)—

Due to round-off errors, the subtraction involved in (4.2.3) may cause P(1)to become
indefinite (neither positive nor negative definite). The resulting least-squares estimates
will be incorrect. This sign change, however, does not usually result in overflow [Cloffi.
1987]. The matrix recursion can be stabilized by replacing it with a set of recursions that
propagate the upper-diagonal-upper transpose (UDUT) factorizations of the matrix P(r)
(Bierman. 1977]. These recursions ensure that the updating of the diagonal matrix D(t)

maintains positive diagonal entries thereby ensuring that P(r) remains positive definite.

The homogeneous difference equation for the error in the estimates of the RLS
algorithm 1s
8(r) = 0(r) ~ 0* = [I- K(HONDT()]8(+-1) (4.2.4)
It is easy to show that (4.2.4) is exponentially stable if A < 1 and P(t) is uniformly
bounded [Ljung, 1985} . If A = 1, then only asymptotic but not exponential stability can
be concluded. Round-off and quantization errors appear as inpuis to (4.2.4). If the
forgetting factor is equal to unity, then these errors can cause the estimation error to
become very large. This observation is confirmed by the detailed statistical analysis in
[Ardalan. 1987]. Thus even when the parameters are not time varying, it is advantageous

from a numerical poin: of view to use a forgetting factor less than unity.

Even after stabilization, the RLS algorithm (with A < 1) may exhibit long term
instability, if the input is spectrally ill conditioned. A heuristic explanation for this
phenomenon [Cioffi. 1987], for the case of a FIR adaptive filter adapting to a moving
average svstem model is as follows. Assume that the input x(t) to the adaptive filter 1s

bandlimited. i.e. its Fourier transform satisfies

X(eJW) = non-zero, forlw— wpl < wp

and
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X(eJ®) =0, for lw — wol = oy
If the filter coefficients of the adaptive filter 8(t) vary very slowly with time, then a

Fourier transform ©(e)®) of the filter coefficients could be defined. Then

O(el®)X(el®) = non-zero,  for lw — wyl < Wy
and

O(eiMX(el®) =0, for lw — ol 2 wy
Over the frequency range o — o)l 2 wp , the filter response O(el?) can take on very large
values without affecting the output error and hence the adaptive filter does not
compensate for this growt.. This growth then leads to an overflow of the registers
containing the filter coefficients. This unbounded growth can be avoided if a small
diagonal constant is added to P(t) at every iteration, or to the diagonal matrix in the

UDUT implementation.

4.3 Sensitivity Analysis

In this section, the effects of small perturbations in the inputs to the updating gain
determination formula (2.3.8)-(2.3.14) are studied. If the resulting perturbation in A is
small, then the change in the estimates P(t), 6(t) and G2(1t) is also small. This can be seen
by examining the update equations of the algorithm. From (2.3.4), it is easy to see that
P-1(1) is a continuous function of A, . The partial derivative of P-(t) with respect to A is

-1
ar;lfw =P l(t-1) + dDT (1)

Assme that there exist constants My and M» such that
Ml < P-1(t) < M»l
and assume further that Il ®(t) Il is bounded. 1.e. the ARX process is stable and has

bounded inputs then
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The perturbation AP-1(1) is thus small if the perturbation in A, is small. It is shown in the
next section that AP(t) = P(t)AP-1(t)P(t). Hence the perturbation in P(t) will be small.
Similarly, (2.3.6) shows that A(t) is a continuous function of Kl and that the derivatve is
bounded provided the eigenvalues of P(t) are upper bounded and l®(t) Il is bounded.

Hence the perturbation in 6(t) will also be small. The derivative of 62(t) in (2.3.5) is

1 y2_13 2
U=2)"-ACWM) 52 (4.3.1)

do?(t) 2
=y°—0°(t-1)-
di, (1-2, +AG()

Using the fact that 0 € A, < a <1, it is relatively straightforward to show that

2 42
o (-R)-AGO

la  (1-A+AG® )

The derivative of 02(t) is thus bounded, and so the resulting perturbation in 62(1) is also
small.

Tot in,acasein which a small change in ¢%(t-1) and 8(t) can cause a large change
in the updating gain factor A, is considered. In the subseguent discussion. the quantities
computed with finite precision are denoted by primes. It is also assumed that the
perturbations in the inputs to the updating gain factor are small, i.e. there exists a positive

A << | such that

lo2(t-1)-02(t- DI < A, [82(1) - 82)l < A, IG'()-G(1) < A (4.3.2)

Consider the following scenario
o2(t-1) + 82(t) < ¥2 but ¢'2(t-1) + §2(1) > y2 (4.3.3)
In this case A, = 0. and if §2(t) = 0, then &', = . Thus the perturbation in the updating

gain factor AA, = A, -A,can be substantial. It can be shown easily that if (4.3.3) holds
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then there is a significant difference between A, and A', only if &2 (t) is small.
However, 62(t), which is the quantity being minimized, is then marginally affected by the
change in A,. This is because the derivative in (4.3.1) is close to zero since (4.3.2) and
(4.3.3) imply that 82(t) and the difference (o2(t-1) - ¥2) is small. Thus though the
perturbation AA, is large, the difference in the calculated value of o2(t) will be marginal.
The large perturbation AA, will cause a large perturbation in the matrix P(t), though the
perturbation in 6(t) will be small since 82(t) is small. In general, the formula (2.3.8)-
(2.3.14), can cause large perturbations in A,, which only marginally affect the resulting
value of o2(t), if the following condition holds for some €, suitably small

[3- o2(t-1) <e. and &%) <e¢ (4.3.4

In order to make the updating gain formula more robust, it is modified by adding the
following additional condition to (2.3.10) — (2.3.14)
If | ¥>- 02(t-1)l <€ and 32(t) < €, for some suitably small € (4.3.5)
then A, =0
For the modified algorithm if the situation of (4.3.3) occurs then the perturbation in 4,
would be small and the resulting value of 6'2(t) would be almost optimal. The same is
true if 62(t-1)+ 82(t) > v?2 and ¢ 2(t-1 )+ 82(1) <y2. However. the modified formula
can in some cases still cause a large perturbation A),. For example if 1 ¥ -2 (t-1)1<¢g
and 82(t) <gand ! y2- 62(t-1 ) <eand 8%(1) > ¢, then A,=0 and A',could be as large
as o. But since 82(1) is no longer negligible, it is clear from (2.3.5) that the decrease in
o2(1) is not insubstantial. In general, it is easy to show that for cases in which the
modified formula yields a large value of AA,, the calculated updating gain factor causes a
significant decrease in 6=, Thus the modification is a compromise between minimizing
o2(t) and reducing the perturbation in the updating gain factor. In contrast using (2.3.8)-
(2.3.14), without anv modification, could cause large AAi,. thus causing large

perturbations in 6(t) and P(1), while decreasing 2 only marginally.
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The sensitivity of the modified formula to perturbations in its inputs 1s now evaluated,
assuming that the situation of (4.3.4) does not occur for the perturbed and unperturbed
algorithms, since it has already been observed that the modified formula can be quite

sensitive if (4.3.4) holds .

Theorem 4.1. If the perturbation in 62(t-1), G(t) and 82(t) is less than A, for somc
small positive number 4< g, where € is given by (4.3.4), and if (4.3.4) does not hold,

then the perturbation in A, is of O(A) provided that a < 0.414.

Proof: The perturbation in the updating gain factor is evaluated assuming that
62 (t-1) + 8%(1) >v? and 6 2 (t-1 )+ 82(1) > ¥2. From (2.3.11)-(2.3.14), it can be seen
that there are a total of 8 distinct cases in which there can be a perturbation in the updating

gain factor:

Case 1: 82(1)= 0 and G(1) = 1;

Case 2: 8%ty and 1+B(t)(G(1)-1) > O:

Case 3: 82(1)=0 and 1+B()(G(1)-1)< O:

Case4: G(ty=1and G'(t) = 1:

Case 5: G'( =1 and 1+B(t)(G()-1) > 0,

Case 6: G('t) = 1 and 1+B(t)(G(1)-1) £ 0:

Case 7: 1+B'(t)(G'(1)-1) > 0 and 1+B(t)(G(1)-1) > O:
Case 8: 1+B'(1)(G'(1)-1) > 0 and 1+B()(G(1)-1) £0

The perturbation in each case is evaluated now.

Case 1. 82y = 0 and G(u = |-
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Since it is assumed that (4.3.4) does not hold, it follows from (2.3.11) that A’y = .. The

assumption that the perturbation in the inputs to the formula is less than A would imply

¥2-62 (t-1)
82(1)

that 82(1) < A< e. Hence B(1) = < -1. Thus

1-p{ :
Vi = L;\w >05. If ¢ £0.5, then A= o, and so the perturbation AA=0.

P

Case 2. 82(1) = 0 and 1+B(t)(G(1)-1) > O:
It has been shown above that B(t) < -1. This together with 1+B(t)(G(t)-1) > 0. would
imply that G(t) < 2. Using (2.3.13), it can be shown that when 1+B(1)(G(1)-1) > 0, then

V{2 ——— iev,>0414. Hence if o < 0.414. then A, = & . and so the perturbation
1+vG(t)

A}L( = O

Case 3. 82(1) = 0 and 1+B(t)(G(1)-1) < O:
From (2.3.14) A, = o, and hence the perturbation AA=0.

Case 4: G'(t) = 1 and G'(t) = 1:
1-B'(1) 1-B(1)

In this case V't{=—=— and v{= —=— . Since it is assumed that the situation of

-~ el

(4.3.4) does not occur. the values of B(t) and B'(t) will differ by an amount greater than
O(A) only if 82(t) is small. But then both B(t) and B'(t) will be large negative numbers

and so A't =Ar = .

Case 5: G'(t) = 1 and 14+B(t)(G(t)-1) > O:

1
Let G(1) = 1+, where I | £ A. Then from (2.3.13), v¢ =-1—[ hal -1]
n N 1+1B

1-B(t . . .
Hence v = E( ) +0(n 2) . Thus as in Case 4. the perturbation will be of O(A).

-

Case 6: G'(v) = 1 and 1+B(t)(G(1)-1) < 0:
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From (2.3.14), A; = a . Since IG(t) - G'(t)I< A, therefore either G(t) = 1+ 1 or G(t)= 1-
N, where N < A. If G(t) = 1+ N, then 1+B(t)(G(1)-1) £ 0 would imply that B(t) £ ;l- i.e.
n

82(1) = O/M). Hence 872(1) < A + O(n) and therefore PB'(t) << —1. Thus Ay = A= & .
On the other hand if G(t)= 1- n then 1+B(t)(G(t)-1) < 0 would imply that B(t) 2—1 > 1,
n

which contradicts the assumption that ¢ 2 (t-1) + 82(t) >y 2.

Case 7: 1+B'(t)(G'(1)-1) > 0 and 1+B()I(G(D)-1) > 0:
An expression for the perturbation Avy is obtained by evaluating the partial derivatives of
vy, from (2.3.13). with respect to B(t) and G(t). For brevity, the time suffix is dropped

in the expressions below

Av = QX-AB + iAG
op oG
where
AR VG
af (2[1+ B(G-D]32
and

v _-G+PBG+PB-2BG2-1
dG  2VG(G-1)2 [1+ B(G-1)]3/2

It can now be assumed that there exists a positive 1}, suitably small such that
IG-112n, and 1+B(G-1) 2 7.

1-f

2

This is because if, say, IG-1l < m, then, as in Case 5, v =v = and therefore as

discussed in Case 4, AA is small. If 0 <1+B(G-1) < 11, then from (2.3.13) v'>>1 and
so A't = Ay = a. The above assumptions along with the assumption that G(t) is bounded

ensure that the partial derivatives are bounded and hence there exist Ky and K1 such that

lAv ] € Ky IAB(D) I+ KalAG(D)!
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Thus if the perturbation AB(t) and AG(t) is of O(A) then the perturbation AA, is also of
O(A).

Case 8: 1+B'(t1)(G'(1)-1) > 0 and 1+B(t)(G(1)-1) £ O:

In this case, Ay = o. If IG'(1)-11 £ for some small number 1, then as in Case 6,
B'(r) < iand asin Case 5, vy = 1-2(0 >> 1, and hence A'; = a..
n

If G(v) differs sufficiently from unity then either 1+B'(t)(G'(t)-1) is very small or else
B'(t) and B(t) differ greatly. If 1+B'(t)(G'(t)-1) is small then from (2.3.13) v’ > @, and
so A'y=a. On the other hand B'(t) and B(t) differ substantially only when 82(1) is small
(assuming (4.3.4) does not hold). Then by the same argument as in Case 2, A'\=a, if
o< 0.414.

\YAYAY

4.4 Error Propagation in the DHOBE Algorithm

The error propagation properties of the DHOBE algorithm are analyzed by tocusing
on the propagation of a single error in 6(t) and P(t) to future instants. Assume that at ime
instant ) there is a perturbation due to round-off error in the esaimates 8(ty) and P(). so
that 8'(ty) = 8(ty) + AB(tg) and P'(ty) = P(tg)+AP(ty), where, the primed quantities are
the perturbed ones. The problem considered here is the effect of these errors on the
estimates 0'(t) and P'(t) at t > ty, assuming that the computations are performed with
infinite precision. Similar studies have been performed by Ljung and Ljung [Ljung.
1985} in their investigation of the error propagation properties of RLS algorithms.
Though the update equations of the DHOBE algorithm are similar to those of the RLS
algorithm, the presence of the updating zain factor, which is a discontinuous function of
the estimates, complicates the analysis. In particular, the results on perturbed linear

differential equations (used in [Ljung, 1985] ) cannot be applied. Error propagation in the




DHOBE algorithm is investigated by performing a first order perturbation analysis of
two coupled nonlinear difference equations. The analysis yields coupled difference
equations whose homogeneous parts are exponentially stable. An upper bound on the

error in the estimates due to finite precision computations is given by the following result:

Theorem 4.2. If the following assumptions hold:

(1) The matrix P(t) is well conditioned, i.e. there exist posituve 1, and N, such that
O0<nI<P)y<nyl forallt (4.4.1)

(it) The ARX process is stable and has bounded inputs,

(iit) The unperturbed algorithm yields bounded prediction errors,

(iv) For some integer M, if the unperturbed algorithm has M updates in an interval of

time. then the perturbed version updates at Jeast once in that interval,

(v) At the updating instants of the perturbed algorithm, a lower bound p is set for the

updating gain factor A, where p is a suitably small positive number.

Then there exist constants my and h which depend on the bounds on the prediction
error of the unperturbed algorithm and the inputs and outputs of the process such that the
error between the perturbed and unperturbed quantities at the updating instants {1, } of the

perturbed algorithm is bounded as

s M -1 1_(1_p)Lk/MJ

IAP(L I < (D)™ (1-p)"" T IAP(O)I + M3 m max AA M —————  (4.4.2)

n, - I<usk u p

M Lk/M ]
1B 11 < (1-p) ™ i1 AB(1 ) 11+ Mphmax AR | = [1- (1-p) T | +
S “ o 1gk P
+ hL max IAP(t)II
n, gk ! (4.4.3)

where N[ and N, are as in (4.4.1).
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Proof :
Define R(t) = P-\(t). Then
R(1) = (1-A) R(t-1) + 1, D(1) DT(1) (4.4.4)
Assume that R(t) and 8(t) are perturbed by an infinitesimal amount at time instant ty. The
perturbed quantities at any time instant t, will satisfy
R'(1) = (1-4) R'(t-1) + A,/ D(1) dT(v) (4.4.5)
where, as before, the perturbed quantities are denoted by primes. Subtracting (4.4.4)
from (4.4.5) it follows that
AR(1) = (1-1) AR(t-1) - Ak [D() PT(1)- R(t-1)] (4.4.6)
where
AR(1) = R'(1) - R(t) and AA, =LA - A, (4.4.7)

The difference equation (4.4.6) can be expressed as

[
AR®) = [T (1-2)AR(ty) + AL @O (1) - R(t-1) ) + () (4.4.8)
1=ty +1
where
t-1 L
, R .
Im= Jla-x ) ALD()D (1) - R(-5-1) | (4.4.9)

J=lptl 1=)+1
The summation in (4.4.9) can be taken over the subsequence {t,. u = . 2...}of instants

at which updates are performed for either the perturbed or the unperturbed algorithm.
This is because at all other instants i, AA; = 0-0 = 0. Also, by the assumptions (1) and (ii)

of Theorem 3.2, there exists a constant m; > 0, such that for all t,

I dT(1)- R(t--DIl <m (4.4.10)
Thus at any instant t;, € {t,}
k-1 K
et < m, 3 [T 1-a)1an ! (4.4.1D)

=] r=u+l

c
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Now assumption (iv) of the theorem impiies that every M consecutive elements of the
subsequence {t,} contains at least one instant at which the perturbed algorithm performs
an update. Thus at least (k/Mj,(where (.] denotes integer part), updates of the perturbed
algorithm have occurred at time instant t,.. Then using assumption (v), (4.4.11) can be

expressed as

)l € my max IAA M1 +M (1p + (1-p)° ot (1-p)t ¥

" 1gu<gk-!

)] (4.4.12)

For example if k=10 and M=3. then in the worst possible case. i.e. one in which the right
hand side of (4.4.11) would be the largest. there would be only one update in the
peiturbed algorithm for every three instants of {t,}. Hence from (4.4.11) an upper bound
on Il I(t}. I would be

It € my maxlAlll [1+1+3(1-p) + 3(1—p)2 + 2(1-0)3]
1<1<9 :

Upper bounding the first and second terms in the right hand side of (4.4.8) and using
(4.4.12) then yields the following expression for the norm of the error in the matrix R{t)
at instants t, which are updating instants for either the perturbed or the unperturbed

algonithm
Lk /M

1-(1-
max IAKx IM--—(——L
1<u<k e p

k/M -1

TAR(tO < (1-p) IAR(t )it + m (4.4.13)

1

Thus the perturbation in R(tx) is bounded. Note that no appreximations were required to
obtain (4.4.13). In order to obtain an upper bound on the error in P(t). a first order
analysis is pertormed. It is assumed that

IAR(t) 11 = Oe). with € <<Agn( R(1) ) where A, refers to the minimum eigenvalue.

Then
Pty =R"lt) = (R(H+AR(1))' 1 = R-I(1) - R-I(1) AR(1) R-H(1) + A4 (4414

where Il A Il = O( €2 ) . Neglecting O( €2) terms vields
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AP(t) = P'(0) - P(t) = P(DAR(DP(1) (4.4.15)
Thus
ILAP(D I €152 I AR(t) I (4.4.16)
Similarly. neglecting O( €2 ) terms vields
I AR 11 € 1M 211 AP (4.4.17)
where Ny and 1> are defined in (4.4.1). Finally, using (4.4.16) and (4.4.17) in (4.4.13)

vields (4.4.2).

From (2.3.6) and (2.3.7). the time recursions for 6(t) and 8'(1) can be expressed as

By =[T-4 Lo dTn |+ 2, Lo v (4.4.18)
and
O =[1-2 L)®(0 |+ L) yin (4419
where
L(t) = P(t) d(n (4.4.20)

Subtractung (4.4.18) from (4.4.19) and performing some manipulations vields

AB( = [1- 2 LdT)] A8t D+ [Ak, L(t) + A/ALD)] [y(1) - DT(0)0(t-1)] (2.4.21)

or

A0 = [T- 2 L0PTO] AB(-1) + J1 (0 + Ja(1) (4.4.22)
where

Tt = A% Lo tyven - DT(08(t-1)) = Ak LD (1) (4.4.234)
and

Jotty = 2, " AL(D (v(0 - DT(0B(- 1)) = &AL 8(1) (4.4.23b)
Since

-2 LodTog] = o070 P Priaed (4,424,

Theretore (:1.4.22) can be expressed as

ABI = e 20 PO P AGE T - Ty« S (4425
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Solving the diffcrence equation (4.4.25) vields

AB(n = H (1-A P'to P'l(t())AO([“) +J 0+ 1,0+ I+ T (4.4.26)
V= tn"“
where
{-
Jyo = z H(l A YP( P (J) AA. L) 8 (4.4.27za;
= P=+l
and
Z H(l K ) P'(1) (j) }.1' ALG) & (4.4.27b)
R A B e | '

Since the perturbation AR(t) 1s of order €. from (4.4.15) the perturbation AP{t) 15 of the
same order. In order to facilitate the analysis, it is assumed that Az, = O(g). Then

substituting for L(j) from (4.4.20) and neglecting O(¢?) terms vields

t-1

{
I = 2 H(l-li') P (1) AXJ,(D(j) d(j) (4.4.28)

J=1 =g+

Hence

Haoibs m, max [Pl (7)1 | Z Hu 2. }"1 (4.4.29)

<'<[ 1

Assumptions (i1) and (111 ensure that there exists a constant h > (). such that

DGy N1 £h < oo
Now . as betore. the upper bound (4.4.29) is evaluated at the updaung instants of the
perturbed and the unperturbed algonthm. The summation of products 1n (3.4.29) can he

upper bounded as in (4.4.13) by

Z H(l-}.'JA}. 2 max [Ax l[‘\] I*M(I‘P*fl-pl: S KM

1<u<k-1

Hence



79

Lk/M ]

1-(1-
I, (6 + It S 1 h max AL M
- 1<ygk ] p

(4.4.30)

Since AL()) = AP()HD()), after neglecting second order terms (4.4.27b) becomes

t-1

Lw= Y H(l L)% POP *(5) APG) D())3() (4.431)
1= lo?l 1—J+l
Thus
n,
11J:(t)ll+ll JJ([)II < hn—mlax IILAP(J)H[Z) Hl 7\. ) + A ] (4.4.32)
SE 1=lp =1 i=)+]

In Appendix 4A. it is shown that the term in the square brackets in (4.4.32) 1s less than

unity and so combining (4.4.26), (4.4.30) and (4.4.32) yields

M |
M - LK/MJ
1460 1 < (1-p)™ 1 AB(1) I + Mjh max 1A | —[1-
<_|<k N p

M,
h—= max lIAP(t )l
n, sk

Thus the perturbation in the parameter estimates is also bounded.

\AAY

Remarks

(1) Assumption (iv) is a technical artifice which facilitates the analysis. It is highly
unlikely that it would ever be violated. Violation of this assumption would imply that the
squared prediction error for the perturbed algorithm is upper bounded by - for large
durations of time. Then. p .vided the input and noise sequences are sufficientiy rich and

uncorrelated. it 1s easy to show that 1 6'(t) — 6% I 2 < O(¥?) for those intervals of time.

2) Assumpuon (v 1s a technical device required to ensure that the homogeneous parts of
4.4 25 and (4.4.3) are exponenually stable. If p <0.001. then in practice the values ot

1., atthe updating instants will usually be larger than p.
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(2) Though the analysis of error propagation has ignored the eftect of round-off errors in
computations, since the homogeneous parts of (4.4.2) and (4.4.3) are exponentially
stable. the errors at any time instant due to round-off errors created at previous time

instants would be bounded [Ljung, 1985].

4.5 Finite Precision Effects on the Bounding Ellipsoid

In this secuon. the effect of round-off errors (in one iteration) on the resulting
pounding ellipsoid 1s studied. More specifically. we ask the question - If 6% € E_j . can

errors 1n the computation of E (i.e. computation of 6(t). P(1) and o-(t) ) cause 8% ¢ L.

Define B(1) = 8(1-6%. Then from (2.3.6)

B(=0(t-11+ LPODMS(1) + A (4.5.1
where Aj 15 the round-off error. Similarly from (2.3.4)
Pl = (1-a) Plt-1) + A, D(HDT(1) + Ay (4.5.2)
and
Gt = (1—hp OA-1+ Ay Y= — Mo -h) 330 + A} (4.5.3,
I-A+ M OT(OP-Dd Ty
Define
A= Bt-1+ LPODOS() (4.5.4)
and
By = (1-Ap) P lt-1) + 2, DD Tty (4.3.5)

Then. atter neglecting second and higher order terms in Ay and Aa, it can be shown that
Vio=ATB A + ATAA + A1 TB A + ATB 4 (4.5.61

where

N

V(=81 P11 B(n =y

Expanding AT By A as in Section 3.3 and using (4.5.3) vields
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V(t-02(1) = (1-A) [V(t-1)=02(t-1)] + A, [vZ()-¥?]

+2A1T By Ay + ATALA| +13 (4.5.8)
From the definition of E, it is clear that 8*e E, iff V(1) < 62(1). Thus if the errors A,
Ab. and Az are large enough. it is possible that 8* ¢ E;. A sufficient condition for 6* €
Ei1s

12417 By A +ATA2AL ] <A [y* - V()] (4.5.9)

In case 4, = 0. then since no update occurs 8* € E; automatically. The condition (4.5.9)
shows that if the errors due to finite word-length computations are small enough then
0*e E, and furthermore. by setting > higher than the actual bound on the noise. the

robustness of the algonithm to finite precision effects can be increased.

4.6 Simulation Studies

Simulation Setup. A fixed point implementation of the OBE algorithm was simulated
by performing the operations in integer arithmetic. The input and output observations.
which are generated as floating point numbers, are converted to integers by the formula

INT( x. 222+ 0.5), x>0

“quant T

INT( x. 202 -0.5).x<0.
where ibit is the number of bits assigned for the integer representation of the fractional
part of the real number x. In the simulations, since an integer is stored in 32 bits. all
registers and word sizes are 32 bits. Multiplication is performed by foruing the product
in a 48-bit word, scaling down by 2=t and then rounding off to the nearest integer.
Inner products are formed simiiarly by accumulating the products in a 4%-bit word.

scaling down and then rounding off.
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In order to minimize the effect of round-off errors and finite word-length storage, the

recursions ot the DHOBE algorithm are implemented as shown below

Bty = 0B(t-1) + Ko
Sty = vt - 8T(t-1) (1)
K(t) = A, P(t-DD()

1-A+AG(t)
G1) = OT(t) P(t-1) d(1)
P(1) = 1_1_}?[ I- KodTw) ] Ple-1)

A (1=2p 83(1)
I-h+ A PT(OP(-Dd T

o(t) =(1=Ap G2(t-1)+ A v2 -

Notice that the only difference between these equations and (2.3.5)-(2.3.7) 1s that the
parameter estimate update 1s performed using P(t-1) and hence errors introduced in the

formauon of P(1) do not affect 6(t).

The upper bound o on the forgetting factor. has to be chosen with care in the fixed
point implementation of the OBE and EOBE algorithms. If o 1s chosen greater than 0.1,
then the elements of the matrix P often increase rapidly in magnitude and overflows can
occur. The reason for this 1s that in the initial stages. the optimum value of the forgetting
factor £ equals o fairly often. Consequently. since 1- A appears in the denominator of
(2 3.7). the magnitude of the elements of P can increase and cause overflows. On the
other hand, if & is chosen too small then the algorithm takes more iterations to converge
and the number of updates increases. A value of o =().1 was found to vield a satistactory

convergence rate and inhibit overflows in the update equation for P(t).

In addition to « , the initial value 62(0) has to be chosen small enough to prevent
overflows in the subsequent calculations of A. This is because if. at any time t. o3 (t-1;
is large and 8(1) 1s small then B = (y>-62 (t-1))/ 83(1) can become a very large negative

number and the product B(G-1) can overflow. However. if overflows can be detected
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and a saturation value is used for B, then the calculation of A will not be affected. Since [3
is negative and large in magnitude. 1+B3(G-1) is a large positive or negative number
depending on whether G is greater than or less than unityv. In case 1+B(G-1) is positive.
then it can be seen from (4) that v,_is greater than unity, and consequently A= . On the
other hand if 1+B(G-1) is negative then A= o from (+). Thus large values of 62(0) can be
used if care i1s taken to account for overflows in the algorithm for calculating 2.
Alternatively, the tormula can just set A = o if 82(1) is smaller than a suitably smail

number. the In the simulations. the initial (unquantized) value ¢2(0) =100.

For the RLS algorithm. the initial value P(0) is also important. Since the bias in the
estmates 1s inversely proportional to P(0), P(0) should be large. However if P(0)) is 100
large. then finite word-length effects can cause the Kalman gain vector K to overfiow.
and the parameter estimates to grow exponentially in the initial stage [Ardalan. 1987].

Therefore a compromise value - P(0) = 10 I was chosen.

Simulation Results

The performance of the DHOBE algorithm is compared to that ot the RLS and
the exponentally weighted recursive least-squares (EWLS) algorithms. for three different
processes. In all the cases. the noise sequence {v(t)} and the input sequenceu(t)jare
generated by 4 pseudo-random number generator with a uniform probability distribution
in [-1.0.1.0]. The upper bound y2is set equal to 1.0. The parameter estimates are
obtained by applying the DHOBE. RLS and EWLS (with weighting factor 2 =0.99) 10
1000 point data sequences. Ten runs of the algorithm are performed on the same model
but with different noise sequences. The number of bits used for the tractional part. ibiz, is
varied from 16 down to 6 bits and the average of the parameter error 1§(1000)-8" 1} 2 s

computed for each value of ibit.
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Example 4.1(Fig.3.1)  AR(S) process

Vit =-0.326 v(t-1) -0.427 vt-2) -0.717v(1-3) -0.288 vit-4) - (.399 vi-50 + v
It can be seen trom Fig. 4.1 that the pertormance of the DHOBE algorithm appears to be
constant as the number of bits varies from 16 to 8. In contrast, the performance of the
RLS and EWLS algorithnus degrades tor ibir < 8. For the RLS algorithm the P mamix
did not remuin positive definite in many runs for ihir < 8. For the EWLS algorithm. this

happened tor ihit <12.

<+ OBE
i - RLS
& EWLS (7. - (199,
10 =

Frror «di)

20 F
30 P SR 1 1 | I
4 6 ¥ 10 12 14 16 N
Number of bits (ibit)
Figure 4.1 Average parameter estimauon error tor the DHOBE

and RLS algorithms for an AR(5) process

Example 4.2 (Fig. 4.2, ARX(2.3) process

vit = 1.ov(t-1)-0.83v(t-2)+0. 14u(t) +u(t-1) +0.16u(1-2) +v(n)
As betore, the average tap error of the DHOBE algorithm appears constant as 17 varies
trom 16 to ¥ bits. The P matrix became negative definite tor ihir = 6. The RLS and EWLS
algorithms do not work well for ibiz < 10. In fact P became indefinite tor thir < 14.1n

the EWLS case.
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o EWLS
10 =
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= 20f _
T —q\:\f
30 . | 1 " 1 2 1 : ] . }
6 8 10 12 14 16 18

Number of bits (ibit)

Figure 4.2 Average parameter cstimauon error for the DHOBE

and RLS algorithms for an ARX(2.3) process

Example 4.3 (Fig. 4.3)  ARX(10,10) process

The DHOBE algorithm worked well for ibit = 12. However for smaller values. P
became indefinite and overflows occurred. For the RLS case, P became indefinite tor ihir
< 14, In order to study the performance of the DHOBE algorithm at smaller word-
lengths. a UDU" factorization of the P matrix was performed. The DHOBE update
equations are identical to the update equations of the weighted RLS algorithm with weight
oy = . and forgetting factor A(t) = (1-Ay) and hence the UDU’ form of the DHOBE can
be easily developed [Ljung, 1983, pg. 334] . The UDU’ form of the DHOBE algorithm
is then compared to the UDU' form of the RLS algorithm. The simulation results show
that for larger word sizes, the performance of the RLS algorithm is superior. For smaller
values of ibit. the average parameter estimation error is about the same for both the

DHOBE and the RLS algorithms.
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4 6 % 10 12 14 16 18
Number of bits (ibit)
Figure 4.3 Average parameter estimaton error tor the DHOBE

and RLS algorithms for an ARX(10.10) process
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Example 4.3 shows that the performance of the UDU’ versions of DHOBE and RLS

algorithms 1s comparable at smaller word-lengths. The superior performance of the

straightforward implementation of the DHOBE algorithm, as compared to the RLS or

EWLS algorithms at smaller word-lengths is therefore primarily due to the superior

numerical properties of the recursion for the matrix P(t).

The update equation for the RLS algorithm with a forgetting factor A is

LT
Pm=[1- P(t- 1D (1) ] P(t-1)

W+ O OPE-DDM) A

The corresponding equation tor the DHOBE algorithm can be rewritten as

(4.6.1H
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P(t- YOO (1) ] P(t-1)

1A 1-A (4.6.2)
— 4+ d (P DY) ‘
" .

t

P =[1-

Since 1- &, plays the same role in the DHOBE algorithm as does A in the RLS algorithm.
the oniy difference between (4.6.1) and (4.6.2) is that the factor (1- A, )/ 4, appears in the
denominator of the term within braces in (4.6.2) as opposed to the corresponding term 7.
in (4.6.1). The degradation of performance occurs pnmarily because the term within
braces becomes indefinite on account of round-off errors. Since £, is usually much smaller
than unitv, the term which is being subtracted from the identity matrix in ¢ $.6.2) is much
smalier than the one in (4.6.1). Thus P(t) in the RLS algorithm has a greater tendency to
become indefinite than the P(t) in the DHOBE ulgorithm. This observauon has been
contirmed by examining the eigenvalues of P(t), for runs in which the RLS algorithm

pertormed poorly.




CHAPTER V

TRACKING ANALYSIS

| Introduction

th

Performance analvsis of adapuve filtering algorithms 1s usually pertormed by
assuming that the unknown system which is being modeled 1s ume-invanart. However.
1 actual pracuce. adapuve fiters are often used in time varving environments. and hence
1t s important to characterize the performance of these zigorithms when the system mode!
purameters can vary with nme. A considerable amount of attention has been paid 1o this
nroblem in the adapuve filtering literature, with anaivsis being performed mainly tor the
LMS and RLS algorithms. with varving amounts o' i© .. See for example [Widrow.
1976]. {Benveniste. 1982}, [Eleftheriou. 1986]. [Rao. 1988]. [Gunnarsson. 1989]. It
wis menuoned in Chapter I] that the incorporation of 2 rorgating tactor in the DHOBE
algonitnm 1s expected to ennance its tracking pertormance. In this chapter. the racking
charactenistics of the alcorithm are studied 1n some detail. The analvsis s, 150 s0me Wavs.
simplified by the assumption of bounded noise. However. as in the previous chapter. the
presence of the data dependent updating factor compiicates any derivaon of €xpressions
for the tracking error (the error between the parameter estimates and the ume varving
parameters). Time varving parameter estimation using the LMS algorithm has been
analvzed using a determinisuc approach in [Anderson. 1983]. The exponential stabiiny i
the homogeneous difterence equation tor the error berween the parameter esumates and
the true parameter 1s used to show bounded parameter esumation error when the

parameters are siowlv ume varving. This approach could be used tor e DHOBE

8X
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algorithm also but the analysis is complicated by the possibility of a zero updating gain
ractor. though. an exponental stability type property could still be tormulated. However.
ror the DHOBE algorithm tand other membership-set estimation aigorithms) 1t ts also
¢qually imporant to ensure that the ume varving true parameters {8=(t)} are contuined 1n
the bounding ellipsoids {E;}. So instead of characterizing tracking in terms ot the
parameter estmation error. we seek conditions which will ensure that the ume varying
trrue parameter vector 1s contained in the bounding ellipsoids. This will also guarantee
pounded parameter eswmation error. Section 3.2 discusses Some necessdly dnd suliicicnt
condiuons tor the ellipsoids to contain 6*(1). It is also shown that it in case a lumi in the
rue parameter vector B causes 1t to fall outside the pounding eliipsoid. then provicea tne
jump 1x not too large. the pounding ellipsoids will move towards 87 and eventeally

AT ey,
[EN NS S

enciose 87, In Secuon 3.3, u rescue device is proposed. which wiil guara:
existence or ellipsoids in the race of large parameter vanauons. Simulation resuits are
presented 1n Section 3.4 which show that the DHOBE algorithm 1s able to track siow and
abrupt variauons in the parameters. The tracking performance. in terms O parametss
esumation €rror. s i manyv cases comparable to the RLS algomtnm with torgetung
ractor.
2.2 Necessary and Sufficient Conditions for Tracking

As menuoned above, racking 1n the context ot bounding cliipsordal parameter
estmanon, will mean ensuring that the time varving true parameter vector 1s conamed

tne pounding ellinsoid. The theorems below present conditions for pUuramerer wacking.

Theorem 3.1 A surficient condiuon tor 8= = £ is

)

R R A ST S L R N1 - R S W o TR S N B I o B S 20

LT by T Snroliownsmar B0 - L

-

Proos 19 8=z Tooomensince B2 Spand

Andrromy 27 Do HT L 2 B s equivalent ot 3200
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Theorem 3.2 6*(t) € E; 1t and onlyv if

Top-i . 1 2 ho (2 I 5,
o -0u-D) P - DB~ (n-6t-) sovtt-h————{y" = v 5.2.0
} el O
where vit) 18 the noise term rrom (2.2.1).
Proot: Subtracung 8*(1) trom both sides of (2.3.6) vields
Bi—6%(1) = Bt- L =8* (0 + A, PP L (3.2.3)

Then using (2.3.4) 1t 1s not difficuit to show that
Vitr= (=2 [00t- 1 =8P (1-D[Btt-1) =81
.o ;‘..(1—}..)5:(1)
+ ANV —————
) (1= 2.0+ 4,G(0

h
19
4a

wnere Veowas defined in (33011 Using (2.2.3) now vields
Viti=GT = (1= 0= Li=8 = (OP (- D6t - 1 — 8= (1]

1-}‘.[(\"({)—'/:>—t1—;‘~:)0'(l—l) 3205
Since 9% = E. iff VIO € 6511y, (53.2.2) then follows.

vvy

P - s . ~ R ' | L
I'heorem (2.2) shows that by choosing v~ to be larger than the actual bound sav v '~
on V=it 1tis possible to increase the tracking capability of the algorithm. The nex:
TNEOTeIn CIVEN AN Upper bound on the Maximum VAriano. in the parametsrs ror whieh

TAvKIn D s gaaranteed

2
>
[eo)
X
)
n

Theorem 3 = Eoyoand A= U then 9~ = L. 17

| : oo PTe-1
AL — I [ /el 7 RS
P b ?_, b= [Proe- 1
-~ O t-h S04
vners
At =8* - 0=1-1 (307

andd e NG Zomgy denote minimum and maximum e:genvalues respecuve

-~

Proos Using 5. 2.7 s strarghttorward 1o snow that
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[6(t-H—8*(DPH(t-1[B(t-1)~6*(1)]
= V(t-D+AT P e -DA@) +2AT 0P (- DB(t-1) (5.2.8)
where 6(1-1) = 8(t-1) — 87(t-1). Now substituting (5.2.8) in (5.2.5) vields
Vit — oo (0 =(1-A[V(t-1=0(t- D]+ A (¥~ =y")
+(1- A AT OP (- DA + 2AT(OP - DBt - 1) (5.2.9)
Since 8%(t-11 & Ei, therefore V(t-1) < o2(t-1) and thus a sufficient condition for
B*(tr e E| 18
AP - DA +2AT (0P - DB - 1 < 1 A

-

A

=) (5.2.10)
Le. 6%(L € E if

7o [ PTHCE - DA #21TA(OI 180t - DR [P - 1]
.

1=,

(*'/:—*‘/':) (5.2.11

Since Vii-1) € 63(t-1), therefore
16—t — D (5.2.12)
/ Prt-1)]

'min[

Substituting (3.2.12)in (3.2.11) gives a sufficient conditon for 6*(t) € E, as
- -1

femax | P (1-1)]

‘\‘/Y}\.mm[P-l('l -]

o TP DITAI +21LA(DIY 67 (1= 1)

“maxt

Soiving this guadratic inequaiity then vields (3.2.6).
\YAYAY
The noise term v=(1) in 5.2.6 can be replaced by ¥< to vield a bound which can be
calculated at the time instant 1. If %, = (. then the difference between y= and Y~ cannot be
exploited 1o increase the tracking capability of the algorithm. In fact in this case. 67(0) €
E,iff 87ty = E,.). Thus if 87(t) jumps out of E,.;. and no updates are performed at future
tme 1nstants r -1 . then 6*(t+i) € E\4; = E.1. and the parameter may never be tracked.

Howevcr. it can be argued that an update will be performed in a finite interval of ume .
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This 1s shown heuristically, by examining the expression for the magnitude of the
predicaon error
1B =1 [8(t-1) =0 (D) TD(1) + v(1) |
If no updates are performed for a large interval of time say from time instant t. to ume
instan: t + N then
HO(t-1) =87 (t+D]) TD(t+i) + v(t+D) | € [v2 — 02(- D)2 v 1= 01,8,

If the input and noise sequences are sufficiently rich. then the regressor vector @(t) will
span the parameter space in all directions and so [6(t-1) =67 (t+1)}Tdt+1) cannot be
arbitrarily small for i e [0. Ny]. If Iv(t+i)i approaches its upper bound ¥. for some 1 in the
same 1nterval. and 1f {v{0} 1s sufficiently uncorrelated with the input {utt)}. then tne

above mequality will be violated and an undate will be pertormed.

If the parameter variation is such that (5.2.2) is violated then 8%t ¢ E. The nex:
theorem shows that if 8*(t) remains fixed after its jump out of E; and if the jump is not
large enough to cause the subsequent ellipsoids E4j . for 1 2 (). to vanish. then the
DHOBE algorithm guarantees that the true parameter will be racked tenciosed) in rinite

time.

Theorem 5.4 Assume that the parameter variation at tume instant 7. causes B=(ti € k.

Assume further that

(1) After this vanation . the parameter remains constant (i.e. the jJump parameter case).
2) o=(t+1) > 0. for i 2 0.

(3) The algonithm does not stop updating.

(4) A lower bound p is imposed on 2 at the updating instants.
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Then there exists a N1 > 0. which depends on the amount of parameter variation and the

actual and user set noise bounds such that 6*(t) € E+N. .

Proof: Since 6*(t) ¢ E, . define
n = [G(t)—9*(t)]P'1(t)[8(r)—9*(t)]—cr:(t) > 0 (5.2.14)
Assumption (1) will imply that A(t+ Ny) = A(t+1) =0 for arbitrary positive Nj.

Substituting in (5.2.9). and iterating yields

t+N, t+N,
Vit+ N —c (t+Np=n H(l ~ A+ zqi_[m (vo(y—=v7) (3.2.15
1=t+1 i=t+]

where g; j is defined n Appendix 4A. Assumption (3) will ensure that some of the A .
; 2 0. will be non-zero. Since the second term on the right hand side of (3.2.15) 1»
negarive. and since the first term is non-increasing, the difference V(t+Ny) - G-(1+N])
will tend to zero as Nj increases. Thus there exists a Ny such that

V(t+N{) - 02(t+N1) £0 (5.2.16)
An esumate of the ime N required for the ellipsoids to regain the parameter vector can

be obtained bv the following analvsis.

Assume that there are K updates in the interval {t+1.t+N]. From (3.2.15). 1018 clear
tnat the inequaitty (3.2.16) will be sausfied ror all K which saasty

K K
n[la-r <Y q [y =71 (5.2.17)
=1 ' j=1 ‘
K
where {t;) is the sequence of updating instants. Now let R(K) = unx . where the
=1

sum 1S taken over the updating instants. It is easy to see that

R(Ky = (1- 2y IR(K-V + 2 = R(K-D+ Ay [1-R(K-1]
In Appendix 4A. 1t is shown that R(t) < 1 tor all t 2 (0. and by Assumption (). },[x = .
nence

R(K) 2 R(K-1) +p[1-R(K-1]
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and so
R(K) 2 (I-p)R(K-1) + p
Thus
R(KY2p + pil-p) + .+p(l-p)K-1 = 1-(1—p)K
Thus rrom (5.2.17). K has to satisfy
N(I-p)R < [1~(1-p)K)(¥2 - v2)

Hence 6*(t) € EH;\;: if the number of updates K. in the interval [1.t+N1] satisfies

log——+ 1)
VT =y

—log(l1-p)

I
()
—
oo

Kz
vy

5.3 A Rescue Procedure

In many cases when thz parameter jump i1s large. or if the ellipsoid has shrunk 1o a
very small size. the intersection of E,_ and S, can be void. In that case. G2(t) can become
negaave. thus indicatng that a bounding ellipsoid cannot be constructed. To circumvent
this failure of the algorithm. a rescue procedure is proposed. If at any time instant 7. G=(1)
becomes negative. then 62(t-1) is increased by an appropriate amount. thereby increasing
the size of E(.y . Then the intersection of the larger Ei.+ »nd 5 will no longer be void. and
thus un ellipsoid E; will be constructed. Alternatively. | - .Id be increased. to permit i
non-nuli intersection. However. the former procedure is preferable because it causes 8(t)

to migrate towards 87(1). thereby reducing the parameter estimation error.

There are essentially two different cases which require calculation of the amount of

increase.

Case 1. 1+ B()[Guu~1}{>0and v, < a.

The guantues P(t), G(t). vi. and a have been definec in Section 2.3. In this case.

. =0 .and soasin Lemma 3.1,
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o2(t) + €2(t) = y2 (5.3.1)
Thus 62(t) is negauve iff 1e(t)! > y. Using (3.3.6) this implies that o(1) is negatve iff
15(0)> 1-A, +A,G(D (5.3.2)
1-A,
On substituting for Ay from (2.3.13), (5.3.2) can be expressed as
G(1)-1 .
16(t)> , Y if G(t)# 1
JVGOA+BOIG(y -1 -1
(5.3.3)
and
RAY
(> — ifG(o =1
1+ B(t)

Using the definition of B(t) from (2.3.17) in (5.3.3) and manipulating terms vields a

necessary and sufficient condition for 6(t) to be negative. in terms of G-(t-1

oo (t-1)< 82(:)+y3[0(t)-1]-”6(”'””5(”'J =K, if G(1) #1

-1 VG()
and (53.3.4)
o2(t-1) <33 +v>=2y|8() I =K, if G(t) = 1
Thus the rescue procedure would replace 62(t-1) by K+ £, where I is a positive
constant. to ensure that 62(t) is positive. Using { = 1, has vielded satisfactory resalts in

simulatons.
Case 2. 74 =«

In this case. from (2.3.3), 62(1) is negative iff

5 o (-1  v- ]
o (1) 2 [1—a+ocG(t)]lr +— [ (5.3.5)
L 64 1—(1_]
Thus 6-(1) is negative iff
r 2 2
) <o —2 O Yk (5.3.6)
[1-a+aG(t) - -

In this case 62(t-1) would be replaced by Ko + £.

5.4 Simulation Results
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The wacking propertes of the DHOBE algorithm are studied for an ARX(1.1) model
y(1) = ay(t-1)+ bu(t) + v(1) (5.4.1)

The nominal values are @ = 0.5 and b = 1.0. The noise {v(t)} and the input {u(t)} is
generated by a pseudo-random number generator with a uniform distribution in [-1.1].

For the DHOBE algorithm, a = 0.2, v = 1.0, and 62(0) = 100. The parameters are

varied as follows
Case 1. Slow varnaton in the parameter vector from = 1.

The parameters a and b are varied by 1% for every 10 samples, starting rrom the firsi
sample, and the output data {y(t)} is generated for t =1,2...1000. The final parameter
estimation error is 7.0x10-3, the final volume is 3.5x10-2 and the final sum of semi-axes
is 0.52. All the bounding ellipsoids contained the true parameter. The parameter esumates
are plotted against the true parameters in Figure 5.1. From the figure it is clear that the

DHOBE algorithm can track slow time variations in the parameters.
Case 2. Slow varation in the parameter vector from r = 500.

The parameters a and b are varied by 1% for everv 10 samples, starting rrom the 5004
sample. The final parameter estimation error is 3.0x10-3 | the the final volume is
5.0x10-* and the final sum of semi-axes is 0.54. All the bounding ellipsoids contained
the true parameter. The parameter estimates are plotted against the true parameters in
Figure 5.2. The figure shows that the algorithm can track slow tume variatons in the

parameters even after it has "converged".
Case 3. Jump in the MA parameter at ¢ = 500.

The parameter b is changed by 100% at the 500th sample. and a is kept constant at its

nominal value. The true parameter vector is out of the bounding ellipsoids from 1 = 500.
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to 1 = 530. after which it is regained by the bounding ellipsoids. The final parameter
estimation error is 1.3x10- | the the final volume is 4.0x10-3 and the final sum of semi-
axes is 0.14. The jump thus appears to have resulted in bounding ellipsoids with smaller
sizes. The parameter estimates are plotted against the true parameters in Fig. 5.3. Fig. 5.4
shows the parameter esumates obtained for this case by applving the RLS algorithm with
a forgetting factor A(t) = 0.9. Fig. 5.5, shows the estimates when the variable forgetting
tactor proposed by Fortescue and Kershenbaum [Goodwin, 1983] is incorporated into

the RLS algorithm . This variable forgetting factor A(t), is a function of the prediction

error and 1s given by

0 (1)
1+G{n)
A vaiue of o = 0.01 was used because it yielded steady state racking error of about the
same magnitude as the DHOBE algorithm. From these figures. it 1s evident that the
DHOBE algorithm can track jumps in the parameters at least as well as the exponenually

weighted RLS algorithm.

. - . -~ . . .
The effect of varving 7= was studied. A value of ¥* = 2 was taken. In this case. the true
parameter did not jump out of the bounding ellipsoid at r = 500. The parameter esamates
are identical to those in Fig. 5.3. But the ellipsoids are larger. as expected. with the final

volume = 3.4 and sum of semi axes = 4.08

For a different run. i.e. with a different input and noise sequence. the jump at1 =
500. caused ©2(t) to become negative. The rescue procedure was then used with
remarkable results. The true parameter was captured at ¢ = 501. The final parameter
estimation error = 2.4x10-* _ the final volume = 5.8x10°=. and the final sum of semi-

axes= (.65. Fig. 3.6 snows that the parameters are tracked extremely rapidly in this case.
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CHAPTER VI

CONCLUSION

This report has focussed in on the bounding ellipsoid approach to membership-set
parameter estimation. It has been shown that the OBE algorithms often yield lower
estimatiorn error in comparison to least-squares algorithms, when the unknown-but-
bounded noise does not satisfy the usual stationary and whiteness assumptions. The OBE
algorithms are thus viable alternatives to conventional parameter esimation algorithms in

many real lire applications.

Previous work in the area of membership-set parameter estimation has concentrated
on parameter estimation of models with known inputs and outputs. In this report, one of
the OBE algorithms- the DHOBE algorithm- has been extended to perform parameter
estimation of linear models with unknown-but-bounded inputs. The extended algorithm
possesses all the advantageous features of the OBE algorithms such as a discerning
update strategy. time varying parameter tracking capability and robustness to numericu!
effects. The wransient pertormance of the algorithm has been observed to be superior to
that of the ELS algorithm in simulations. This is particularly advantageous when the
number of data points is small. Analysis of the extended algorithm has shown that the
algorithm vields 100% confidence intervals for the parameters at every sampling instant.
The analvsis of the extended algorithm requires less restrictive assumptions than the

analvses of the extended least-squares or recursive maximum likelihood algonthms.

Analvsis of the finnte precision effects in the DHOBE aigorithm has shown that the

algorithm 15 stable with respect to errors due to finite wordlength computations and

104
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storage. A detailed analysis of this nature has never been performed tor any of the other
existing MSPE algorithms. Furthermore, simulation results show that the matrix
recursion invoived in the DHOBE algorithm 1s better conditioned numerically than the

corresponding recursion in the conventonal recursive least-squares algorithm.

The tracking characteristics of the DHOBE algorithm have been studied in detail.
Some necessary and sufficient conditions for parameter tracking have been derived. It has
been shown theoretically and through simulations that the algorithm can track small
variations in the parameters. A procedure has been suggested, whereby large jumps in the

parameters can also be tracked.

The work performed in this report can provide a spring board for several areas of
future research. The connection between the OBE algorithms and the weighted least-
squares algorithm could perhaps be exploited to develop fast ( O(N) ) implementations.
It may turn out that the numerical properties of these implementations are superior to
those of the existing fast least-squares algorithms. Another promising research direction
is to recast the OBE algorithms in an output error formulation. The algorithms could then
be used to obtain unbiased estimates for ARX models with output noise, which are
commonly used models in adaptive control. The use of the OBE algorithms in reduced
order modeling is also an interesting application. If a bound on the maximum allowable
modeling inaccuracy is specified. the OBE algorithms could be used to generate a class of
reduced order models which can approximate the unknown large order syvstem. Thus
there exists a gamut of applications where the OBE algorithms can be applied and in fact

prove to be viable alternatives to conventional parameter estimation algorithms.




APPENDIX 2A

Derivation of the Bias Expression (2.5.4)

The svstem model is an ARX(1.1) model
y(t) =x v(t-1) + by u(t) + v(v) (2A.1)

where the measurable input u(t) is white and uncorrelated with the noise v(t). and

vt = A sin (0o + (1-Awir) {(2A2
with w(t) being a white noise sequence.
Define
n(t) = A sin (wot) (2A.3)
The predictor model 1s
f\\’(t)zay(t-l)«i-bu(tv) (2A .4
The RLS algorithm. at time instant t = N minimizes
i N R .
= [yt =) (2A.5
NP
1=1
The RLS solution thus satisfies
]i[ (t-1)+(by = byu(t: ()][y“'m 0 (2A.¢
— (x =a)vlt- 1)+ (og — o)ul(t) + v(t v b= () ZA.0)
N 0 [oult) |

t=}
In order to obtain an expression for the asvmptotic bias the following defininons are
made.
Let ptty and g(t) be two signals. Define the sample expectation

N

- 1

Elp(y)]= lim — 3 p(1) QA7
r\——boolel

and the sample cross correlation

106




107

- A .
Ryq() = Elp(t-i)g(D]= 11m ?\_Z p(t-i)q(t) (2A.8)

provided the limit exists. Then from (2A.6) the RLS solurion asymptotically satisfies
(1)
VV

a=x+ 2A9
R (O) ( )

and
b= by (ZA.10)

Thus the esumate of the moving average coefficient is unbiased.

To obtain an expression tor the bias in the AR coefficient. the sample correlations 1n
(2A.9) are evaluated. Multplying the L.H. S. and R.H.S of (2A.1) by vy(t) . taking
sample expectations and exploiting the fact that u(t) is white and uncorrelated with v(1)
vields

Ryy (0) =x Ryy (1) + b0 2 05 + Ryy (0)
But since w(t) is white

Ryy (0) = Ryn (0) + (1-A)2 o3,

Hence
Ryy () = X Ryy (1) + by 65 + Ryn (0 + (1-A)2 o (2A.11
[t is easv to show [Ljung, 1987, pg. 28], that
- 2
E[n%(1)] = %—, (2A.12)
and
- Al
E[(n(tn(t-1)} = —~cos wpT (2A.13)

Now multiplying both sides of (2A.1) by n(t) and taking sample expectatons vields
Ryn (01 = X Ryp (1) + Ry (0) (2A.14)

or altematvely
N

A AR .
E[\(t)n(t)l— 11m v(Or—Zr +r\11m KZZx‘n(t)n(t-l) (2A.15)
t=1 - t=11=1
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Since 1v | < 1 to encure a stable system, the first term on the right hand side of (2A.15)
t

vanishes. Using the fact that the series Z.tln(t)n(t -1) converges, it is not difficult 1o
1=1

show that
1 N
Ely(in(t)]= lim » x' =Y n(On(t-i) (2A.16)
[ )= lin Z .\; )
which using (2A.13) vields
— Al A
Ely(tin(t)] 5 Ln Z coswgl (2A.17)

By expressing x as €%, the infinite sum in (2A.17) can be evaluated to vield

- . A* l-xcosw ,
E{viiin(t}=— 08 Wa s (2A.18)
2 1=2xcoswp+x”

And so using (2A.12) and (2A.14)

,
A~ COS Wp — X ,

E[y(t- lin(t] =Ry (b= 0 5 (2A.19)
2 1-=2xcoswy+x~

Since wi(t} is white. therefore. I_{_W (= ﬁyn ().

Now multplying (2A.1) by y(t-1) . and taking sample expectatons as in (2A.11) vields

(2A21:

Ryy (1) = x Ryy (0) + Ryq (1) (2A.20)
Using (2A.11) and (2A.20) to soive for ﬁw (0) then vields
l A:H— XCos u)”] s o~ AT

ﬁ\.}(()): b() (1_.‘\)-0._ i

I~ H—~rc0§cunrx 2

Substituting the expressions tor I—{yy (0 and ﬁ_w (h= ﬁm (1)1in (2A9) finally vields

—{coswn — x]

a=x+ -

2 (Kol +-a)el )ll—"cos‘”””

2 N L [—x°

| S |




APPENDIX 3A

Proof of the updating gain formula (3.2.8) and (3.2.9):

Since the optimum forgetting factor A.,* minimizes o%(t), therefore

o2(t, 1% <o2(t, 0) = 62(t-1) (3A.1)
and
do?(t) =¥ - o] - 80 Y Ga} (3A.2)
di (1-A+ 2 G() )
and
d’oln _ 28mGo

(3A.3)

Al (1A+AGH))

t

Thus d2 62( 1) /d A2 > 0. unless 82( t) = 0 or G(t) = 0. Since P(t-1) is positive definite.
Gt = 0 iff d(t) = 0. The algorithm can be modified to detect the occurrence of a null
®(t) and set it to a small non-zero value, prior to the calculation of G(t). Thus it can be
assumed that Gt = 0 for all t. If 82ty = 0. then. since G2(0) < y* by (3.2.7). and since
c<(t) is non-increasing. therefore 62(t-1)+82(t) < ¥* and by (3A.2). do2(t)/dA, 15
positive. and hence o2(1) is minimized if %.,* = 0. Now for the sequel. the second
derivative of 62( t) can be assumed to be positive and hence the unique minimum occurs
atd 62( 1) / da, = 0. From (3A.2), if G(t) = 1, 6%(t) is minimized if

2= (1-B)H2 (3A.H

Otherwise if G(t) =1, 62(1) is minimized if

}-:“ _ 1 [1 ) G([) ] (3A.5)
1- G(1) I+ OG- D

Moreover, in (3A.4) and (3A.3)
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A >0 BN <l & o(t-1)+ 8(1) >42 (3A.6)
It is easy 10 show that 1+B(t) (G(1)-1) is always positive. Since 62(0) < y2 and 0%(1) is
non-increasing, therefore (1) > 0. From (3A.6), B(t) < 1, hence 1- 1/(t) < 0. Then
1+ (GH)-1) € 0 = Gy <1- 1/B1) = G <0
which is a contradiction.Thus (3A.5) would always yield real ll* . It is now shown that
(3A.4) and (3A.5) vield values of lt* which are upper bounded by unity.
If G(t)=1. then since B(t) > 0, (3A.4) vields A,* < 1.
IfG() < 1, then A, 21 & 1-[ G(t)/ (1+ BOHG(1)-1)) |12 > 1- G(1)
< G (1+ BOG(D)-1) )21 (3A.7)
But G(1) < 1 and B(t) > O contradict (3A.7). Hence if G(t) < 1. then 2,” < 1. It can be
shown in exactly the same way that G(t) > 1, would imply that )\1* < 1. Thus unlike the

case in [Dasgupta. 1987], no upper bound has to be imposed on the forgetting factor.




APPENDIX 3B

A Time Domain Implication of the SPR Condition

A sufficient condition for convergence of the ELS algorithm is that the transfer
1

C(z’h)

funcnon H(z'!) = - %] be strictly positive real . This means

Re H(e/®) >0 V w & [-n.7] (3B.1)

A necessary condition for ( 3B.1) to hold will now be derived.

Using the definition of H(z'!), ( 3B.1) becomes

]
Re{ Clelo) “%] >0 VYoe [-nn] (3B.2)
e am
Now
—Creti® _cae-2i® _ o o-TIO)
Re{ l —%] = %Re L=Ciee oo~ =}
Clewy 2 < l1+cje’o +cze‘2J“’ — .. +cre
_ iReJI—c1 COS W — C» COS 2W—..—C, COS TM + j(C; SINW + C, 5in 2W+..+C, SIN IO \|

2 ] 1+, COSM + €1 COS2W+..+C; COS TW — j(Cy SINW + € sin2W+..+¢; Sin 1O |

Ranonaiizing the above expression and taking the real part vields

‘, ‘
Re/ ] ——l-} = 1
| Ce®) 2] x(w)

=1t r |
1-(c§+c§+..+cf)—zzZCichos(]‘-uwl (3B.3)

I i=] j=2
! [ 1,2 e ‘ 1
= — 1-(0l +ci+.+ Cr)—ZKjCOSj(D (3B.4)
x(w)L =
where x() is positive function of the c¢'s and w, and

)
K= 72cic,-+] (3B.5)

1=1

The SPR condition ( 3B.2) then implies

r-1
1 >(c,’ +Ci+..+ c;)+Zchosjw Vwe|-n. x|
J=1
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Now define
r-1
A jtwr= Y K cosjo Voe[-n.7]

=
Then
n -1 n
j_nA,_l(m) dw = E;ij‘_ncosjco do=0
j:

Ilence Ar.j(w) cannot have the same sign for all w € [-n,n]. So for some @. Ar.j(W)
will be non-negative, and thus
cf‘ +c%+..+ c,2 <1

Thus the SPR condition implies that the /> norm of the impulse response of the filter
C(zli=1+cizl +caz2+ . crzT, is upper bounded by 2, or in other words, the
coefficient vector [cy, c2. .. ¢;]T lies in the unit sphere centered at the origin of r-
dimensional Euclidean space.

Next. it is shown that the condition (3.3.10b) implies that the SPR condition ( 3B.2)

will hold. It can be seen from ( 3B.3) that

r

Rel d —%lz 1 {1—( +ci+.+c?)-2 chllc_,l

[Ce?®) 2] x(w)

Thus ¢ 3B.2) will hold if

=1 r
o] e o] A
1—(c1 +C5+..+ c,)—ZEZIciI le;1 20

=1 j=2
Le. if
1—(lc1|+lczl+..+ lcrl)“ 20

T
Thus Y ic;l < 1 implies that the SPR condition ( 3B.2) is true.

=]




APPENDIX 4A
Summability of the Weighting Factors of the DHOBE Algorithm

Define

t
[}Ji H(I-l’j) ifi<t
Qi = j=1e1 (4A. 1

2, ifi=t

Then the term in square brackets in (4.4.32) can be defined as

R(y)= iqj{ (4A.2)
=1, +1
And
R() = (1- A'DR(t-1) + A, (4A.3)
Now
Ritg+1) =441 <1
Assume

R(t-1) <1
Then by (4A.3)
R(t) < (1- A).1 + &,
le.

R(t) <1
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